Final Report

FEASIBILITY STUDY FOR TURN LANE IMPROVEMENTS

on Madeline Avenue at Nova Road

City of Port Orange

Final Report

Feasibility Study for Turn Lane Improvements on Madeline Avenue at Nova Road

Task Work Order TOF-VHB-06

Prepared for:

Prepared by:

Vanasse Hangen Brustlin, Inc.
Orlando, FL

April 2022

EXECUTIVE SUMMARY

This report presents the results of a feasibility analysis completed for the intersection of Madeline Avenue at Nova Road, located in the City of Port Orange, Volusia County, Florida. This report was prompted by an application by the City of Port Orange to evaluate the feasibility of construction of the following improvements along Madeline Avenue:

- Extend the existing westbound and eastbound left turn lanes
- Add exclusive eastbound and westbound right turn lanes

The purpose of constructing exclusive right turn lanes and extending the left turn lanes is to reduce delays for turning vehicles and through vehicles and to assist in maintaining the functional capacity of Madeline Avenue.

Based upon the crash analysis, qualitative assessment, field observations, intersection analysis, Benefit/Cost (B / C) analysis, engineering judgment, and input from FDOT, both short-term and long-term considerations are recommended to improve the safety and operation of the study intersection. The short-term improvements are developed in coordination with FDOT and can be constructed as soon as possible. The long-term improvements include the extension of left turn lanes and addition of exclusive right turn lanes on eastbound and westbound Madeline Avenue and other improvements that will be constructed along with these capacity enhancements.

Short-term Recommendations

- Replace the existing permissive-only left turn phase for the eastbound and westbound left turn movements with a protected-only phase. The protected-only left turn phase is recommended because concurrent eastbound and westbound left turn movements cannot be accommodated safely at the study intersection. A separate structural analysis of the existing mast arms must be completed before the installation of three-section signal heads for the eastbound and westbound protected-only left turn phases.
- Increase pedestrian safety with improved lighting (Please note that this recommendation was included in the intersection lighting project (FPID 439881-1) along Nova Road)
- Install flexible retroreflective backplates for all signal heads
- Install ADA-compliant detectable warnings on pedestrian ramps
- Install FTP-68B-06 sign panels to replace sign stickers at pedestrian pushbuttons
- Refresh yellow median nose painting and install reflective pavement markers (RPMs)
- Add guide striping for all the four left turn movements

The short-term considerations are illustrated in Figure ES-1.

Long-term Recommendations

- Extend the existing eastbound left turn lane to a storage length of $\mathbf{2 9 5}$ feet and provide an exclusive right turn lane with a storage length of $\mathbf{2 2 0}$ feet as shown in Figure ES-2. Based on the conceptual designs of the proposed improvements, it is anticipated that the eastbound approach improvements on Madeline Avenue would not need additional ROW. Please note that for the eastbound proposed improvements, the northside roadway edge (along Madeline Avenue) was held to minimize right-of-way impacts and the proposed concept strives to provide an efficient design.
- Extend the existing westbound left turn lane to a storage length of 270 feet and provide an exclusive westbound right turn lane with a storage length of $\mathbf{2 2 0}$ feet as shown in Figure ES-3. It is anticipated that the westbound approach improvements on Madeline Avenue would need additional ROW of approximately 0.209 acres.
- Reconstruct traffic signal to meet current FDOT standards
- Install pedestrian detector stations with new pushbuttons to meet ADA criteria for the following:
o West leg at the northwest and southwest corners
o East leg at the northeast and southwest corners
o North leg in both directions in the median
o South leg at the southeast corner
- Install intersection lighting to meet horizontal and vertical illuminance criteria per current FDOT standards as mandated when reconstructing a signalized intersection

The long-term modifications can be implemented at an approximate construction cost of $\$ 1,162,410$ (2025 value) and yields a B/C ratio of 8.4 which indicates that the anticipated benefits outweigh the estimated costs for this recommended alternative.

CONTENTS
EXECUTIVE SUMMARY i
Short-term Recommendations i
Long-term Recommendations ii
CONTENTS vi
INTRODUCTION 1
EXISTING CONDITIONS 3
Field Inventory 3
Traffic Volume Data 6
Existing Operational Analysis 6
Left Turn Phase Warrant Analysis 9
Crash Data 10
QUALITATIVE ASSESSMENT 12
Traffic 12
Paint and Signage 13
Pedestrians and Cyclists 13
ADA Related Observations 13
FEASIBILITY ANALYSIS 14
Background 14
Site Assessments for Proposed Improvements 15
Methodology 16
Future Traffic Development 16
2025 Operational Analysis 19
B/C Analysis. 20
Traffic Operational Benefits 20
Safety Benefits 21
Improvement Construction Costs 21
Conclusion 22
RECOMMENDATIONS 23
Short-term Recommendations 23
Long-term Recommendations 25
APPENDICES 28

LIST OF TABLES

Table 1: Field Inventory 4
Table 2: 8 Hour Turning Movement Percentages (All Vehicles)6
Table 3: Existing Operational Analysis Results for Madeline Avenue at Nova Road 8
Table 4: Existing Multimodal Analysis Results for Madeline Avenue at Nova Road 8
Table 5: Madeline Avenue at Nova Road - Crash Summary (01/01/2017 and 12/15/2021) 11
Table 6: BEBR Population Growth 17
Table 7: 2025 Operational Analysis Results - Before and After 19
Table 8: 2025 Multimodal Analysis Results - Before and After 20
Table 9: Unit Value of MOEs 21
Table 10: Adjusted Cost Estimates based on FDOT Highway Construction Cost Inflation Factors 21
Table 11: Madeline Avenue at Nova Road - B/C Analysis Results 22
LIST OF FIGURES
Figure E-1: Short-term Considerations - Madeline Avenue at Nova Road iii
Figure E-2: Roadway Improvement Diagram - Eastbound Madeline Avenue at Nova Road iv
Figure E-3: Roadway Improvement Diagram - Westbound Madeline Avenue at Nova Road v
Figure 1: Project Location Map 2
Figure 2: Condition Diagram - Madeline Avenue at Nova Road
Figure 3: Existing TMCs - Madeline Avenue at Nova Road7
Figure 4: Potential Developments - Madeline Avenue at Nova Road 14
Figure 5: 2025 TMV - Madeline Avenue at Nova Road 18
Figure 6: Short-term Considerations - Madeline Avenue at Nova Road 24
Figure 7: Roadway Improvement Diagram - Eastbound Madeline Avenue at Nova Road 26
Figure 8: Roadway Improvement Diagram - Westbound Madeline Avenue at Nova Road 27

LIST OF APPENDICES

Appendix A-1: Responses to Comments

Appendix A-2: Traffic Data
Appendix B: Existing Synchro Outputs \& Signal Timing Sheets Crash Data
Appendix C: Crash Data
Appendix D: Future Traffic Development
Appendix E: 2025 Operational Analysis Outputs
Appendix F: Supporting Documentation for B/C Analysis

INTRODUCTION

VHB, Inc. was retained to perform a feasibility analysis study for turn lane improvements at the intersections of Madeline Avenue at Nova Road, located in the City of Port Orange, Volusia County, Florida, as illustrated in Figure 1. This study was initiated by an application by the City of Port Orange to evaluate the feasibility of the below improvements at the study intersection:

1. Extend the existing westbound and eastbound left turn lanes
2. Add exclusive eastbound and westbound right turn lanes

As mentioned in the feasibility application, the intent of the proposed improvements is to reduce delays for turning vehicles and through vehicles by allowing increased stacking area to segregate vehicles departing Madeline Avenue from through traffic and to assist in maintaining the functional capacity of Madeline Avenue.

The analysis methods used in completing this study are consistent with the Manual on Uniform Traffic Control Devices (MUTCD), the Manual on Uniform Traffic Studies (MUTS), the Traffic Engineering Manual (TEM), Florida Department of Transportation (FDOT) Design Manual (FDM), and engineering judgment. The remainder of this report documents existing conditions, vehicle and pedestrian counts, qualitative assessment, crash analysis, intersection analysis, B/C analysis, and recommendations. The analysis will not only consider the benefits and feasibility of extending the left turn lanes and addition of right turn lanes at the study intersection as mentioned above, but also safety and other intersection improvements.

The current document is revised to address the comments received from the City of Port Orange, Volusia County, River to Sea Transportation Planning Organization (R2CTPO), and FDOT on the draft report submitted in February 2022. The responses to comments are provided in Appendix A-1.

N
Project Location
N.T.S.

Wivo Figure 1
Project Location Map
Madeline Avenue \&
Nova Road Intersection

EXISTING CONDITIONS

Field Inventory

The intersection of Madeline Avenue at Nova Road is in the City of Port Orange, Volusia County, Florida. The characteristics of the study intersection are presented in Table 1. Figure 2 depicts the existing conditions including the general roadway geometry, pavement markings, land use, and intersection traffic control of the study intersections. The conditions stated in this report reflect conditions as observed on the date of the qualitative assessment.

Table 1: Field Inventory

Features	Madeline Avenue at Nova Road
Main Street	Madeline Avenue (east-west); two lane undivided urban major collector
Minor Street	Nova Road (north-south); six lane divided urban principal arterial
Intersection Type	4-legged intersection
Number of Intersection Approach Lanes	Northbound - 1 left turn lane, 2 through lanes \& 1 shared through/right turn lane Southbound - 1 left turn lane, 2 through lanes \& 1 shared through/right turn lane Eastbound - 1 left turn lane $\& 1$ shared through/right turn lane Westbound - 1 left turn lane \& 1 shared through/right turn lane
Roadway Maintenance	Madeline Avenue - City of Port Orange Nova Road - FDOT
Traffic Control	Signal
Speed Limit	Madeline Avenue - 25 mph (west leg)/35 mph (east leg) Nova Road - 50 mph
Bicycle Lanes	No bicycle lanes on Madeline Avenue Exclusive bicycle lanes are provided on Nova Road in both directions
Sidewalks	Madeline Avenue (west leg) - full coverage on south side of the roadway, partial coverage on north side Madeline Avenue (east leg) - full coverage on north side of the roadway only Nova Road - full coverage provided on both sides of the roadway
Surrounding Development	Northwest: BP Gas Station and Convenience Store Northeast: Vacant Land Southwest: Mobil Gas Station/7-Eleven Convenience Store Southeast: Port Orange Stables
Nearest Signalized	
intersections	Madeline Avenue - No signalized intersection to the east Madeline Avenue \& Clyde Morris Boulevard - 1.27 miles to the west Nova Road \& Reed Canal Road - 0.75 miles to the north Nova Road \& Herbert Street - 0.51 miles to the south
Roadway Lighting	Streetlights - northwest corner of the intersection (mounted on a utility pole)

Traffic Volume Data

Two 24-hour volume approach counts were collected - one on Madeline Avenue west of Nova Road and the other on Nova Road, south of Madeline Avenue, on 12/07/2021, representing a typical commuter weekday. The 24 -hour volume traffic counts were supplemented with 8 -hour intersection turning movement counts (TMCs). The TMCs were collected between 7:00 AM - 9:00 AM, 11:00 AM - 1:00 PM and 2:00 PM - 6:00 PM at the study intersection. These hours represent the highest eight hours obtained from the volume counts. From this data, the AM and PM peak traffic hours were found to occur from 7:30 AM to 8:30 AM and 4:30 PM to 5:30 PM. The overall peak hour for the intersections was found to occur during the PM peak hour. The TMCs revealed that traffic along Madeline Avenue peaks in the eastbound direction during both AM and PM conditions and the traffic along Nova Road peaks in the northbound direction during the AM peak hour and southbound direction during the PM peak hour. The 24 -hour volume count, 8hour TMCs and pedestrian/bicycle counts are provided in Appendix A-2. The Table $\mathbf{2}$ summarizes the distribution of turning movements at the study intersection.

Table 2: 8 Hour Turning Movement Percentages (All Vehicles)

Study Intersection	Movement	Northbound	Southbound	Eastbound	Westbound
Madeline Avenue at Nova Road	Left turn/U-turn	13.10%	5.06%	25.27%	20.61%
	Through	83.29%	84.84%	30.94%	51.09%
	Right-turn	3.61%	10.11%	43.79%	28.31%

The field collected 2021 TMCs were compared and adjusted based on the 2019 TMC data provided by the County for AM and PM peak hours. Figure $\mathbf{3}$ provides the 2021 AM and PM peak hour turning movements counts for the study intersection.

Existing Operational Analysis

The existing operating conditions were determined using Synchro 11 software. The signal timing information was provided by Volusia County. Table $\mathbf{3}$ summarizes the intersection delay, levels of service (LOS), and volume over count (V/C) ratios at the study intersection during the AM and PM peak periods. The synchro results are provided in Appendix B. As shown in Table 3, eastbound and westbound approaches along Madeline Avenue were found to operate at LOS D or E.

N
AM (PM) Peak Hour Traffic Volumes
$\rightarrow \quad$ Traffic Movement

Existing TMCs
Madeline Avenue $\&$
Nova Road Intersection

Table 3: Existing Operational Analysis Results for Madeline Avenue at Nova Road

Approach	Existing AM			Existing PM		
	Delay (sec/veh)	LOS	V/C Ratio*	Delay (sec/veh)	LOS	V/C Ratio*
Eastbound	57.8	E	0.78	72.3	E	0.85
Westbound	54.1	D	0.67	$64 . .2$	E	0.70
Northbound	27.3	C	0.65	31.9	C	0.81
Southbound	28.0	C	0.45	33.1	C	0.59
Overall	$\mathbf{3 3 . 8}$	\mathbf{C}	$\mathbf{0 . 7 8}$	$\mathbf{3 9 . 3}$	\mathbf{D}	$\mathbf{0 . 8 5}$

Note: * V/C Ratio - Volume over count ratio; The maximum value is reported for each movement and the overall intersection

A lost time adjustment of 3.0 seconds was added to eastbound and westbound left turn lanes to replicate the field observed queues for these movements. A summary of the pedestrian and bicycle LOS analysis at the signalized study intersections is included in Table 4. As shown in this Table, both the pedestrian and bicycle modes are found to operate at LOS D or better during both the AM and PM peak hours. The pedestrian and bicycle LOS values reported are based on the HCM $6^{\text {th }}$ Edition methodologies. Pedestrian LOS at a signalized intersection is based on factors such as the number of traffic lanes crossed, disturbance caused by motorized vehicle traffic (traffic volumes, turning types, etc.), and the presence of channelized right turns. The bicycle LOS at a signalized intersection is based on factors such as the presence of bicycle lanes and/or paved shoulders, separation from motorized vehicle traffic, traffic volumes and speeds, and heavy vehicle percentage.

Table 4: Existing Multimodal Analysis Results for Madeline Avenue at Nova Road

Peak Period	Pedestrian Mode LOS				Bicycle Mode LOS			
	EB	WB	NB	SB	EB	WB	NB	SB
AM Peak	B	B	C	C	D	D	B	B
PM Peak	C	B	C	C	D	C	B	B

Left Turn Phase Warrant Analysis

Based on FDOT's input, a left turn phase warrant analysis was performed for the eastbound and westbound left turn movements. It should be noted that since the left turn phase warrant analysis is outside the current study scope, data that was not collected for this warrant analysis was borrowed from the Left Turn Phase Warrant Study completed by FDOT for Nova Road and Madeline Avenue in 2019. The analysis results for the eastbound left turn movement show that the warrant is satisfied based on left turn delay estimated by Synchro. However, the warrant is not satisfied for the westbound left turn movement. The recommendation for a consideration of a protected phase for the eastbound and westbound left turn movements in the existing conditions is discussed in the following sections of this report. The warrant analysis sheets are provided in

Appendix B.

Crash Data

The latest available five years of crash data (from January 1, 2017 to December 15, 2021) at the study intersections were obtained from Signal Four Analytics. Raw crash data is included in

Appendix C.

As shown in Table 5, there were 64 crashes reported within the influence area of the Madeline Avenue at Nova Road intersection. They consisted of 25 rear end, 13 left turn, 8 sideswipe, 8 angle, 5 off road, 2 right turn, 1 rollover, 1 other, and 1 pedestrian/bicyclist related crashes. The crashes caused 27 injury crashes and 1 fatality and total damages amounted to approximately \$9,550. One fatality occurred in the year 2020 and 1 pedestrian/bicyclist crash occurred in 2021. 66\% of the crashes occurred in daylight conditions and the remaining 34% crashes occurred in dark or dusk conditions. Pavement condition was dry for 55 crashes, and wet for 9 crashes. In addition to the significant number of rear end crashes (which are typical at a signalized intersection), a significant number of left turn and angle crashes were also observed at the study intersection.

Fatality Crash (\#24032474), August 8, 2020: A vehicle making EBL was struck by a vehicle travelling SBT at the intersection. After being struck, the turning vehicle spun onto the curb, ejecting the driver in the process.

Pedestrian/Bicyclist Crash (\#89398892), August 6, 2021: A bicyclist attempted to cross Nova Road diagonally from the north median island to the southwest corner, facing away from traffic. The southbound travelling vehicle had a green signal, striking the cyclist in the middle of the travel lane.

Table 5: Madeline Avenue at Nova Road - Crash Summary (01/01/2017 and 12/15/2021)

Crash Type	2017	2018	2019	2020	2021	Total	Proportion
Rear End	5	4	7	6	3	25	39\%
Head On	0	0	0	0	0	0	0\%
Sideswipe	0	1	3	2	2	8	13\%
Rollover	0	0	0	1	0	1	2\%
Angle	3	0	2	2	1	8	13\%
Left Turn	2	3	2	2	4	13	20\%
Right Turn	0	0	0	0	2	2	3\%
Off Road	1	1	1	2	0	5	8\%
Pedestrian \& Bicycle	0	0	0	0	1	1	2\%
Animal	0	0	0	0	0	0	0\%
Other	0	0	1	0	0	1	2\%
Total	11	9	16	15	13	64	100\%
Crash Severity	2017	2018	2019	2020	2021	Total	Proportion
Fatality	0	0	0	1	0	1	3\%
Injury	6	4	5	7	5	27	82\%
Property Damage Only	1	0	0	3	1	5	15\%
Total	7	4	5	11	6	33	100\%
Pavement Condition	2017	2018	2019	2020	2021	Total	Proportion
Wet	1	0	4	2	2	9	14\%
Dry	10	9	12	13	11	55	86\%
Slippery	0	0	0	0	0	0	0\%
Total	11	9	16	15	13	64	100\%
Light Condition	2017	2018	2019	2020	2021	Total	Proportion
Daylight	8	6	10	9	9	42	66\%
Dusk	1	0	0	1	0	2	3\%
Dawn	0	0	0	0	0	0	0\%
Dark	2	3	6	5	4	20	31\%
Total	11	9	16	15	13	64	100\%
Under the Influence	2017	2018	2019	2020	2021	Total	Proportion
Alcohol	0	1	1	1	1	4	6\%
Drugs	0	0	0	1	0	1	2\%
Total	0	1	1	2	1	5	8\%

QUALITATIVE ASSESSMENT

A qualitative assessment (QA) was conducted at the study intersection in the field to evaluate the existing operating conditions occurring on a typical weekday, and to identify areas where improvements would be potentially beneficial to the overall safety and efficiency of the location. A registered professional engineer performed the QA during the AM and PM peak hour periods (including school opening and closing times). The field observations are summarized as follows:

Traffic

AM Peak Period (7-9 AM)

- Substantial queueing was noted along both the eastbound and westbound approaches (Madeline Avenue), with heavier traffic on the westbound approach. Vehicle queueing of up to 18 vehicles was observed on the westbound approach with less frequent congestion on the eastbound approach (up to 10 vehicle queues were observed).
- Notably, the heavy conflict between westbound through movements and eastbound left turn movements would frequently result in eastbound left turning vehicles entering and waiting in the intersection and completing the movement after the end of the phase. Similar situations also occurred for the westbound left turning movement, albeit less frequently.
- In some instances, eastbound and westbound queues were not cleared by the end of the phase. It was also noted that the available left turn storage on these approaches were not exceeded, most likely because of the through/right turn movement queues blocked the left turning vehicles.
- It is noted that vehicles exiting the Mobil driveway onto the eastbound approach were blocked by the queued through/right turn movement vehicles, however the Mobil exiting traffic was generally low and did not result in any significant conflicts.
- Very little congestion was observed along the northbound and southbound approaches (S Nova Road), with one exception. The northbound left turning vehicles were observed to exceed the available storage length by one or two vehicles in some instances.
- No drivers were observed skipping the queue to enter the left turn storage. Drivers along Nova Road generally travelled much faster due to the higher speed limit, available capacity, and lack of congestion.

PM Peak Period (3-5 PM)

- The observations on the westbound approach were similar to the AM observations, however it was noted that the eastbound approach experienced heavier traffic and queueing (up to 18 vehicles). Similar issues were observed with up to three vehicles waiting in the intersection to perform the permitted eastbound left turn.
- Queue storage for the eastbound left exceeded during several cycles (up to 8 vehicles).
- On the northbound and southbound approaches, queues of up to 10 vehicles were observed, however were able to clear the intersection in a single cycle.
- Due to the heavier eastbound queuing in the evening, it was common to see commuters skipping the through/right queue, travelling through the median or opposite lane to enter the left turn storage. Similar speeds were observed for the approaches as in the AM peak.

Paint and Signage

Pavement markings and signage on Nova Road are in fair condition, however, the pavement markings on Madeline Avenue are faded. Pedestrians/bicyclists crossing Nova Road must cross in two stages because of the existing width of the roadway. The eastbound and westbound left turn movements operate under permissive phase only. It was also noted that reflective backplates were not installed on signal heads.

Pedestrians and Cyclists

No pedestrians or cyclists were observed crossing any approach in the AM or PM periods, most likely because of the absence of significant pedestrian/bicycle generators near the study intersection.

ADA Related Observations

Curb ramps are present and at an acceptable slope, with median refuge provided in the center of Nova Road. Pushbuttons are provided on the corners of the intersection and on the median refuges. Curb ramp warning pads appear to have been previously installed at the intersection corners but have since been completely removed.

FEASIBILITY ANALYSIS

Background

The City of Port Orange submitted an application to perform a feasibility study to construct the following improvements along Madeline Avenue at Nova Road:

1. Extend the existing westbound left turn lane and eastbound left turn lane
2. Add an eastbound right turn lane and a westbound right turn lane

The purpose of constructing exclusive right turn lanes and extending the left turn lanes is to reduce delays for turning vehicles and through vehicles by allowing increased stacking area to segregate vehicles departing Madeline Avenue from through traffic and to assist in maintaining the functional capacity of Madeline Avenue. As per the pre-scoping meeting held on September 14,2021 , there was also a discussion about the future traffic volume growth due to the potential developments in the northeast and southeast corners of the study intersection (shown in Figure 4). In addition to the capacity improvements, safety improvements are also considered in this study and are explained in the following sections of this study.

Figure 4: Potential Developments - Madeline Avenue at Nova Road

Site Assessments for Proposed Improvements

This section provides a brief assessment of the sites that can be considered before constructing the proposed roadway improvements. To construct exclusive right turn lanes, the following elements will need to be accounted for:

Eastbound

- A parcel agreement will be needed to reconstruct the driveway and harmonizing treatments
- Existing inlet needs to be modified to a manhole and a new inlet constructed at the proposed curb line
- Removal of +/-30" oak tree
- Reconstruct SW corner ramps and update pedestrian features.
- Existing signal adjustments
- Pavement markings
- Underground utilities cannot be determined, but above ground evidence is as follows:
o Waterline and Sewer
o Miscellaneous irrigation

Westbound

- To provide a 12-foot border width per FDM 210.7.1, an eight-foot-wide swath of private property will need to be acquired for right-of-way use. The agreement will need to include driveway reconstruction (south parcel) and harmonizing treatments
- North Side: Two existing inlets need to be modified to a manhole and two new inlets constructed at the proposed curb line
- South Side: Extend pipe run/MES 250 linear feet to the east with one new inlet constructed at the proposed curb line
- Existing signal adjustments
- Reconstruct northeast corner ramps and update pedestrian features
- Relocate aboveground utilities, 6 poles
- Underground utilities cannot be determined, but above ground evidence is as follows:
o Gas line
o Waterline

Methodology

The methodology for determining the feasibility of implementing the proposed improvements includes performing a comparison of before (No-Build) and after (Build) operating conditions at study intersection utilizing traffic operation analysis software (Synchro 11) and preparing a B/C analysis for the proposed improvements. The No-Build condition represents the existing intersection configuration, and the Build condition represents the capacity improvements as well signal improvements.

It should be noted that short-term signal and ADA improvements (that can be built by FDOT as soon as possible) are also included in the study recommendations, for which a B/C ratio was not calculated.

Future Traffic Development

The development of traffic projections for the study intersection required the examination of historical growth, proposed development levels within vicinity, and a basic understanding of local traffic circulation patterns and travel characteristics. As such, the following sources were used to derive reasonable future traffic forecasts.

- Population Projections: The population estimates obtained from the most current Bureau of Economic and Business Research (BEBR), Florida Population Studies, Volume 54 Bulletin 189, dated April 2021 was used. The low, medium, and high population projections for 2045 are summarized in Table 6. The growth rates between 2020 and 2045 population projections range from approximately 0.07% percent to 1.62% percent per year for Volusia County. BEBR population study data is included in Appendix D.
- Historical Traffic Trends Analysis: Historical traffic trends analysis based on least squares regression analysis was conducted for the study roadways using traffic data from the 2019 Volusia County Traffic Count Program. The trends-based annual growth rate is calculated at 0.1% and 0.3% for Nova Road north and south of Madeline Avenue, respectively. This analysis was not conducted for Madeline Avenue because traffic count data was not available for last seven years. The trends analysis sheets are provided in Appendix D.
- Approved Developments: The project trips from the potential developments in the northeast and southeast corners of the study intersection with a build-out date of 2025 were added to the background traffic. It was assumed that 25% of the developable area will be developed by Year 2025.

Table 6: BEBR Population Growth

County	$\mathbf{2 0 2 0}$	Future Year 2045		
		Projection Type	Population Projection	Annual Growth Rate
	531,588	Low	561,900	0.07%
		Medium	662,000	0.80%
		High	774,300	1.62%

The following assumptions were made per the stakeholder meeting held on January 4, 2022:

- Based on a comparison of annual growth rates from the two primary sources (BEBR population estimates, and historical trends analysis), a simple annual growth rate of 1.0% was used to derive the year 2025 background turning movement volumes (from the year 2021 volumes).
- 25% of the project trips from potential developments along Madeline Avenue (full access) and 75% along Nova Road (right in right out only) were added to the background trips for the year 2025.

Figure 5 provides the 2025 AM and PM turning movement volumes for the study intersection. All the supporting documents - including the BEBR report, TRENDS analyses, future land-use and zoning, Institute of Transportation Engineers (ITE) Trip Generation sheets, and background plus project trip calculations are provided in Appendix D.

N Project Location

AM (PM) Peak Hour Traffic Volumes
$\longrightarrow \quad$ Traffic Movement

2025 TMVs
Madeline Avenue \&
Nova Road Intersection

2025 Operational Analysis

The 2025 operational analysis was performed for the proposed alternative at study intersection for before and after conditions. The before conditions assume that there is no change in intersection geometry and signal timings, whereas the after conditions assume improvements under the proposed alternative. As used for the existing conditions analysis, the 2025 operating conditions were determined using Synchro 11 software. Table 7 summarizes the intersection delay and LOS at each study intersection for before (No-Build) and after (Build) conditions during the two peak periods.

The following recommended storage lengths are determined based on operational analysis and using a total deceleration distance of 145 feet for a design speed of 35 mph in urban conditions:

- Eastbound Left Turn - 295 feet
- Eastbound Right Turn - 220 feet
- Westbound Left Turn - 270 feet
- Westbound Right Turn - 220 feet

A summary of the pedestrian and bicycle LOS analysis at the signalized study intersections is included in Table 8. As shown in this Table, both the pedestrian and bicycle modes are found to operate within LOS D during both the AM and PM peak hours. The synchro results are provided in Appendix E.

Table 7: 2025 Operational Analysis Results for Madeline Avenue at Nova Road

Approach	2025 AM Peak Hour						2025 PM Peak Hour					
	Before (No-Build)			After (Build)			Before (No-Build)			After (Build)		
	Delay (Sec.)	LOS	V/C Ratio	Delay (Sec.)	LOS	$\begin{aligned} & \text { V/C } \\ & \text { Ratio } \end{aligned}$	Delay (Sec.)	LOS	V/C Ratio	Delay (Sec.)	LOS	$\begin{array}{\|l} \text { V/C } \\ \text { Ratio } \end{array}$
Eastbound	103.9	F	1.25	39.9	D	0.74	75.5	E	0.89	50.9	D	0.79
Westbound	65.1	E	0.79	36.2	D	0.64	89.4	F	1.14	54.9	D	0.69
Northbound	29.3	C	0.67	32.1	C	0.64	36.4	D	0.82	37.5	D	0.82
Southbound	28.8	C	0.53	36.2	D	0.63	40.9	D	0.68	43	D	0.81
Overall	41.6	D	1.25	34.8	C	0.74	47.4	D	1.14	43.1	D	0.82

[^0]Table 8: 2025 Multimodal Analysis Results - Before and After

Peak Period	Pedestrian Mode LOS								Bicycle Mode LOS				
	EB	WB	NB	SB	EB	WB	NB	SB					
AM Peak	B	B	C	C	D	D	B	B					
PM Peak	C	B	C	D	D	D	B	B					
$\mathbf{2 0 2 5}$ Build (After)													
AM Peak	C	B	C	C	D	D	B	B					
PM Peak	C	C	C	D	D	D	B	B					

B/C Analysis

$A B / C$ analysis was performed for the study intersection based on traffic operational and safety benefits for the proposed improvements. To determine the benefits, the year 2025 operational analysis results for the No-Build and Build conditions and the adjusted year 2025 improvements cost were used. The following sections describe the overall process.

Traffic Operational Benefits

To estimate the operational benefits of the proposed intersection improvements, Synchro reported networkwide measures of effectiveness (MOEs) were used. The operational benefits of the proposed intersection improvements are defined in terms of annualized cost savings associated with reductions in the following two MOEs:
o Total Delay (Vehicle-Hours)
o Fuel Consumption (Gallons)
The benefits were calculated for 300 days in a year for eight hours per day (4 hours each for AM and PM peak periods) accounting for reduced benefits anticipated due to lower traffic volumes during the weekend. The value of delay time per hour (\$20.17) and fuel cost (\$4.11) were obtained from "2021 Urban Mobility Report" published by Texas A\&M University and "AAA gas prices (as of $4 / 20 / 2022$)", respectively. Table 9 summarizes the unit value of each MOE in a tabular format along with its source.

Table 9: Unit Value of MOEs

MOE Values	Unit Value	Source
Delay (\$)	20.17	2021 Urban Mobility Report published by Texas A\&M Transportation Institute (TTI)
Fuel (\$/gal.)	$\$ 4.11$	AAA Gas Prices (as of 2/3/2022)
Days per Year	300	Average days with observable AM, Mid \& PM peaking characteristics

Safety Benefits

Historical crash method as specified in the 2022 FDM was used to calculate the safety benefits of the proposed signal improvements. For this study, safety benefit associated with changing the permissive-only to protected-only left turn phase for the eastbound and westbound left turn movements was used in the B/C analysis. A Crash Reduction Factor (CRF) of 99\% was used based on Crash Modification Factor (CMF) ID 333 from the cmfclearinghouse.org for angle crashes. In addition, all the left turn crashes on Madeline Avenue were also assumed to be corrected with the proposed signal improvements.

Improvement Construction Costs

The estimated roadway and signal improvements cost for the Madeline Avenue at Nova Road intersection improvements is $\$ 1,162,410$ (2025 value) and it has a corresponding annualized cost amounting to $\$ 85,553$. Table 10 summarizes the cost estimate in today's (2022) dollar value as well for the next three years based on the latest available FDOT highway construction cost inflation factors published on July 1, 2021.

Table 10: Adjusted Cost Estimates based on FDOT Highway Construction Cost Inflation Factors

Fiscal Year	Inflation Factor	Multiplier	Adjusted Cost
2022	Base	1.000	$\$ 1,070,358.98$
2023	2.70%	1.027	$\$ 1,099,258.68$
2024	2.80%	1.056	$\$ 1,130,299.09$
2025	2.90%	1.086	$\$ 1,162,409.86$

Table 11 summarizes the benefit cost analysis for the proposed improvements. The analysis yields a B / C ratio of 8.4. The cost estimates can be found in Appendix F. Please note that potential right-of-way (ROW) cost is not included in the B/C analysis. The service life for the modification is assumed 20 years and the interest rate used in the calculation of annualized costs is assumed 4%, which is a value frequently used by the FDOT in their benefit cost computations. Based on the conceptual designs of the proposed improvements, it is anticipated that the eastbound approach improvements on Madeline Avenue would not need additional ROW. However, it is anticipated that the westbound approach improvements on Madeline Avenue would need additional ROW of approximately 0.209 acres. Please note that for the eastbound proposed improvements, the north roadway edge was held to minimize ROW impacts.

Conclusion

The calculated B / C ratio indicates that the anticipated benefits outweigh the estimated costs for the proposed modifications, with operational benefits derived through reduced costs associated with lower delay and fuel consumption and safety benefits through costs associated with less crashes.

Table 11: Madeline Avenue at Nova Road - B/C Analysis Results

Proposed Improvements	Total Benefit (Operational + Safety ${ }^{1,2}$	Annualized Construction Cost ${ }^{3}$	
			B/C Ratio ${ }^{4}$
- Extend eastbound left turn lane - Add an exclusive eastbound right turn lane - Extend westbound left turn lane - Add an exclusive westbound right turn lane - Replace permissive-only phase with protectedonly phase for the eastbound and westbound left turn movements	\$720,247	\$85,553	8.4

Notes:

1) Operational benefit is based on the year 2025 intersection analysis of the proposed roadway improvements
2) Safety benefit is based on the mitigation of angle/left turn crashes from the implementation of protected phase
3) Annualized construction cost is based on 2025 values and is based on a total cost of $\$ 1,162,410$, interest rate of 4%, and service life of 20 years for the proposed improvements
4) ROW cost is not included in the B / C analysis

RECOMMENDATIONS

Based upon the crash analysis, qualitative assessment, field observations, intersection analysis, B / C analysis, engineering judgment, and input from FDOT, short-term and long-term improvements are recommended to improve the safety and operation of the study intersection. The short-term improvements are developed in coordination with FDOT and can be constructed as soon as possible. The long-term improvements include the extension of left turn lanes and addition of exclusive right turn lanes on eastbound and westbound Madeline Avenue and other improvements that will be constructed along with these capacity enhancements.

Short-term Recommendations

- Replace the existing permissive-only left turn phase for the eastbound and westbound left turn movements with a protected-only phase. The protected-only left turn phase is recommended because concurrent eastbound and westbound left turn movements cannot be accommodated safely at the study intersection. A separate structural analysis of the existing mast arms must be completed before the installation of three-section signal heads for the eastbound and westbound protected-only left turn phases.
- Increase pedestrian safety with improved lighting (Please note that this recommendation was included in the intersection lighting project (FPID 439881-1) along Nova Road)
- Install flexible retroreflective backplates for all signal heads
- Install ADA-compliant detectable warnings on pedestrian ramps
- Install FTP-68B-06 sign panels to replace sign stickers at pedestrian pushbuttons
- Refresh yellow median nose painting and install reflective pavement markers (RPMs)
- Add guide striping for all the four left turn movements

The short-term considerations are illustrated in Figure 6.

Long-term Recommendations

- Extend the existing eastbound left turn lane to a storage length of 295 feet and provide an exclusive right turn lane with a storage length of $\mathbf{2 2 0}$ feet as shown in Figure 7. Based on the conceptual designs of the proposed improvements, it is anticipated that the eastbound approach improvements on Madeline Avenue would not need additional ROW. Please note that for the eastbound proposed improvements, the northside roadway edge (along Madeline Avenue) was held to minimize right-of-way impacts and the proposed concept strives to provide an efficient design.
- Extend the existing westbound left turn lane to a storage length of $\mathbf{2 7 0}$ feet and provide an exclusive westbound right turn lane with a storage length of $\mathbf{2 2 0}$ feet as shown in Figure 8. It is anticipated that the westbound approach improvements on Madeline Avenue would need additional ROW of approximately 0.209 acres.
- Reconstruct traffic signal to meet current FDOT standards
- Install pedestrian detector stations with new pushbuttons to meet ADA criteria for the following:
o West leg at the northwest and southwest corners
o East leg at the northeast and southwest corners
o North leg in both directions in the median
o South leg at the southeast corner
- Install intersection lighting to meet horizontal and vertical illuminance criteria per current FDOT standards as mandated when reconstructing a signalized intersection

The long-term modifications can be implemented at an approximate construction cost of $\$ 1,162,410$ (2025 value) and yields a B/C ratio of 8.4 which indicates that the anticipated benefits outweigh the estimated costs for this recommended alternative.

APPENDICES

APPENDIX A-1:
Responses to Comments

Feasibility Study for Turn Lane Improvements on Madeline Avenue at

Nova Road

Responses to Comments received on the Draft Report submitted in February 2022

Responses to City's Comments

1. Page 3 Paragraph 6 includes the word "eastbound" describing the exclusive right turn lane to be consistent with the description of "westbound" turn lanes in the next paragraph.

Response: The word "eastbound" will be included in the revised report.
2. It doesn't seem that anticipated cost to acquire additional ROW was included in the cost estimate and Benefit Cost Analysis.

Response: As mentioned in the report and based on the approved scope, the anticipated ROW cost is not included in the B/C analysis.
3. Is any comparison used to determine effectiveness of proposed brick and mortar improvements compared to timing adjustment of lights? Possible east and then west only phases which would allow either side to empty all staging vehicles instead of overlapping? Alternative technology is available that can hold the "dedicated" green arrow for any left turning vehicles staged instead of forcing them to wait until the end of a phase?

Response: Under the current conditions, the eastbound/westbound left turning vehicles are stopping in the middle of the intersection and then completing the turn at the end of the eastbound/westbound phases because of the permissive-only phases for the side street. As part of this study, a protected phase is recommended to be added to the eastbound/westbound left turn movements to avoid this existing situation. As mentioned in the report, this recommendation is based on field observations as well as crash data. To determine the effectiveness of the capacity and signal improvements, a Build (or After Scenario) analysis was conducted and compared to the No-Build (Before Scenario) and the operational benefits were reported in the Section - 2025 Operational Analysis. Moreover, a B / C analysis was also conducted to quantify the capacity and signal improvement benefits.

Please note that any modifications to the signal phasing will have to go through FDOT (and adjacent signals along Nova Road will also be considered).
4. They do not allude to the capacity or the current level of Service (LOS) being a percentage of a calculated capacity. Recommendation to improve is being based off of cost benefit and not expansion of the capacity of the intersection.

Response: Please note that B / C analysis is based on the benefits of the capacity improvements. The benefits of the Build (with the proposed improvements) over the No-Build (existing configuration) are measured by 3 factors - delay, total stops \& fuel consumption. Table 11 shows the reduction in delay, number of stops, and fuel consumption in the Build alternative compared to the No-Build alternative.
5. Page ii - The approximate cost listed doesn't distinguish if it includes design and construction: Text says "modifications can be implemented at an approximate cost"; if just construction costs estimated, suggest changing text to "approximate construction cost"

Response: The text will be updated to "approximate construction cost".
6. Page ii - There are 2 items for "consideration"; ADA issues \& triangular island. How do we get these included in the design?

Response: The ADA issues listed in the report will be taken care of as part of the short-term improvements - which most likely will be built by FDOT along with the short-term signal improvements. The long-term ADA considerations will be included in the revised cost estimate. The recommendation related to the triangular island is a consideration (which will have a minor construction cost) that may require coordination with the associated business owner, which is outside the scope of this study. As such, this specific recommendation will not be included in the revised report.
7. Page 8 - Should the Field Inventory include who is responsible for maintenance?

Response: We will update the Field Inventory Table to include the roadway maintenance agencies. Based on available information from Volusia County, the roadway maintenance agency for Madeline Ave is the City of Port Orange while FDOT maintains Nova Rd.
8. Does the study include the existing volume to capacity ratio? If so, please assist in locating this; this is required documentation for the TPO's Implementation Application.

Response: The existing V/C ratio information is in the Synchro Reports provided in Appendix B. The V/C ratios will be highlighted for easy reference in the updated report.
9. The Feasibility Study does not appear to inventory, address, or make statements regarding any surrounding infrastructure or stormwater drainage conditions that might be impacted by the improvements.

Response: Please note that this is a planning level feasibility study, and a field survey was not conducted to make statements regarding the surrounding infrastructure or stormwater drainage conditions that may be impacted by the proposed improvements. However, brief text regarding these impacts will be added to the revised report based on a desktop review of the study location.

Responses to County's Comments

10. Page ii - Update 1st sentence in last paragraph to show that the project application was submitted by the City, not the County.

Response: This comment is noted. We will update the report accordingly.
11. Page 13 - Verify crash info and \# for the noted pedestrian/bicycle crash. The crash report seems to indicate the crash involved a southbound vehicle on Nova that struck a cyclist that was crossing diagonally (NE to SW), not an eastbound vehicle on Madeline.

Response: This comment is noted. We will verify the crash description and update the report accordingly.
12. Page 29-30 - Clarify which proposed modifications are included in the B/C and project cost estimates. It appears that the signal-related modifications are not included in the cost estimates, but the report combines the signal work and turn lanes in the recommendations. The assumption is that the intent is to implement the signal work together with the turn lane work as part of a single project, but it may be helpful to confirm this and update any language/cost estimates in the study as needed, particularly if any of the signal modifications could potentially require the mast arms to be rebuilt.

Response: This comment is noted. To clarify, FDOT may be implementing the signal modifications related to changing the permissive left turn phase to protected-only before the construction of the turn lane improvements. As suggested, we will update the LRE to include the cost of all the recommended signal-related modifications and the B / C calculation.

Responses to FDOT's Comments

13. Include left turn phasing warrants (NCHRP Report 457) in the analysis. Include specific recommendation to install now if left turn phasing is warranted.
a. Based on the above recommendation, address FYA by time of day and ped-omit phase for the permissive left turn movement during pedestrian actuation.
14. FPID 436325-2 includes ITS communication system and safety improvements at various intersections along SR 5A. The project was scheduled to begin in the Spring of 2021 and end in the Fall of 2022.
15. FPID 439881-1 is an intersection lighting project along SR 5A. SR 5A at Madeline Avenue is included in this project. The goal of this project is to increase pedestrian safety with improved lighting.
16. Short-term Improvements
a. Install flexible retroreflective backplates for all signal heads.
b. Install ADA-compliant detectable warnings on pedestrian ramps.
c. Install FTP-68B-06 sign panels to replace sign stickers at pedestrian pushbuttons.
d. Install post-mounted R10-15L Left-Turn Yield to Pedestrians signing on the eastbound and westbound approaches
e. Refresh yellow median nose painting and install RPMs
f. Add guide striping for all four left-turn movements
17. Long-Term Considerations
a. Install pedestrian detector stations with new pushbuttons to meet ADA criteria for the:
i. West leg at the NW and SW corners
ii. East leg at the NE and SW corners
iii. North leg in both directions in the median
iv. South leg at the SE corner
b. Reconstruct the traffic signal to meet current standards
c. Install intersection lighting to meet horizontal and vertical illuminance criteria per current FDOT standards as mandated when reconstructing a signalized intersection.

Responses for Comments 13 through 17: These comments are noted. We will update the report accordingly.

APPENDIX A-2:
Traffic Data

Roadway Count Summary
 Vanasse Hangen Brustlin, Inc.

Start Date : December 7, 2021
Stop Date : December 7, 2021
County : Volusia
Location : Madeline Ave at west of Nova Rd

Start Time	00:00
Stop Time	$24: 00$
Station Number	0
Equipment ID	322

7-Dec-21

| End Time | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15 | 8 | 4 | 0 | 0 | 1 | 11 | 13 | 54 | 61 | 63 | 63 | 61 |
| 30 | 4 | 1 | 2 | 2 | 1 | 10 | 27 | 73 | 88 | 65 | 63 | 70 |
| 45 | 4 | 0 | 1 | 2 | 5 | 15 | 21 | 76 | 66 | 73 | 63 | 84 |
| 00 | 4 | 3 | 2 | 3 | 2 | 14 | 54 | 78 | 78 | 67 | 63 | 83 |
| Hr Total | 20 | 8 | 5 | 7 | 9 | 50 | 115 | 281 | 293 | 268 | 252 | 298 |

End Time	12	13	14	15	16	17	18	19	20	21	22	23
15	83	73	78	88	83	85	67	56	47	23	18	9
30	89	74	67	96	78	76	65	37	33	19	14	5
45	60	70	81	95	95	83	61	46	35	16	13	8
00	86	88	77	109	90	64	53	38	27	13	12	5
Hr Total	318	305	303	388	346	308	246	177	142	71	57	27

24 Hour Total	$:$	4,294					
AM Peak Hour begins	$:$	$11: 30$	AM Peak Volume	$:$	339	AM Peak Hour Factor	$:$
PM Peak Hour begins	$:$	$15: 00$	PM Peak Volume	$:$	388	PM PeaK Hour Factor	$:$

7-Dec-21

| End Time | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15 | 7 | 5 | 4 | 2 | 4 | 12 | 19 | 42 | 90 | 67 | 76 | 69 |
| 30 | 4 | 3 | 3 | 4 | 2 | 15 | 21 | 53 | 63 | 66 | 72 | 54 |
| 45 | 4 | 1 | 1 | 3 | 6 | 12 | 38 | 73 | 64 | 65 | 59 | 61 |
| 00 | 5 | 3 | 0 | 3 | 4 | 12 | 44 | 87 | 54 | 58 | 62 | 70 |
| Hr Total | 20 | 12 | 8 | 12 | 16 | 51 | 122 | 255 | 271 | 256 | 269 | 254 |

End Time	12	13	14	15	16	17	18	19	20	21	22	23
15	83	82	82	67	99	110	93	55	31	36	20	13
30	83	89	97	104	107	127	66	44	42	16	15	7
45	100	60	81	130	118	71	50	31	42	26	10	10
00	77	68	109	93	117	69	42	37	22	24	8	4
Hr Total	343	299	369	394	441	377	251	167	137	102	53	34

End Time	12	13	14	15	16	17	18	19	20	21	22	23
15	166	155	160	155	182	195	160	111	78	59	38	22
30	172	163	164	200	185	203	131	81	75	35	29	12
45	160	130	162	225	213	154	111	77	77	42	23	18
00	163	156	186	202	207	133	95	75	49	37	20	9
Hr Total	661	604	672	782	787	685	497	344	279	173	110	61

	AM Peak Volume	$:$	651	AM Peak Hour Factor	$: 0.95$
PM Peak Hour begins	$:$	$16: 30$	PM Peak Volume	$: 818$	PM PeaK Hour Factor

Roadway Count Summary
 Vanasse Hangen Brustlin, Inc.

Start Date : December 7, 2021
Stop Date : December 7, 2021
County : Volusia
Location : Nova Rd south of Madeline Ave

Start Time	$00: 00$
Stop Time	$24: 00$
Station Number	0
Equipment ID	9

7-Dec-21

End Time	00	01	02	03	04	05	06	07	08	09	10	11
15	23	17	10	11	7	27	71	145	218	209	212	244
30	20	12	5	7	20	34	64	216	208	221	237	217
45	12	5	8	7	6	21	37	135	302	243	245	256
206												
00	10	10	9	4	22	54	141	309	221	230	246	260
Hr Total	65	44	32	28	70	152	411	972	890	905	951	927

End Time	12	13	14	15	16	17	18	19	20	21	22	23
15	262	261	240	251	296	309	223	163	112	92	62	44
30	222	240	285	257	287	265	242	111	111	62	45	36
45	262	283	271	271	294	262	192	132	82	62	48	32
00	231	267	247	280	291	242	139	122	96	65	30	22
Hr Total	977	1,051	1,043	1,059	1,168	1,078	796	528	401	281	185	134

24 Hour Total	$:$	14,148					
AM Peak Hour begins	$:$	$7: 15$	AM Peak Volume	$:$	1,045	AM Peak Hour Factor	$:$
PM Peak Hour begins	$:$	$16: 15$	PM Peak Volume	$:$	1,181	PM PeaK Hour Factor	$:$

7-Dec-21

Lane 2

End Time	00	01	02	03	04	05	06	07	08	09	10	11
15	0	0	0	0	0	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0	0	0	0	0	0
45	0	0	0	0	0	0	0	0	0	0	0	0
00	0	0	0	0	0	0	0	0	0	0	0	0
Hr Total	0	0	0	0	0	0	0	0	0	0	0	0

End Time	12	13	14	15	16	17	18	19	20	21	22	23
15	0	0	0	0	0	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0	0	0	0	0	0
45	0	0	0	0	0	0	0	0	0	0	0	0
00	0	0	0	0	0	0	0	0	0	0	0	0
Hr Total	0	0	0	0	0	0	0	0	0	0	0	0

24 Hour Total
AM Peak Hour begins
PM Peak Hour begins

0
. AM Peak Volume :

AM Peak Volume	$:$	0	AM Peak Hour Factor
PM Peak Volume	$:$	0	PM PeaK Hour Factor

PM PeaK Hour Factor
7-Dec-21

| End Time | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15 | 23 | 17 | 10 | 11 | 7 | 27 | 71 | 145 | 218 | 209 | 212 | 244 |
| 30 | 20 | 12 | 5 | 7 | 20 | 34 | 64 | 216 | 208 | 221 | 237 | 217 |
| 45 | 12 | 5 | 8 | 6 | 21 | 37 | 135 | 302 | 243 | 245 | 256 | 206 |
| 00 | 10 | 10 | 9 | 4 | 22 | 54 | 141 | 309 | 221 | 230 | 246 | 260 |
| Hr Total | 65 | 44 | 32 | 28 | 70 | 152 | 411 | 972 | 890 | 905 | 951 | 927 |

End Time	12	13	14	15	16	17	18	19	20	21	22	23
15	262	261	240	251	296	309	223	163	112	92	62	44
30	222	240	285	257	287	265	242	111	111	62	45	36
45	262	283	271	271	294	262	192	132	82	62	48	32
00	231	267	247	280	291	242	139	122	96	65	30	22
Hr Total	977	1,051	1,043	1,059	1,168	1,078	796	528	401	281	185	134

PM Peak Hour begins	$:$	AM Peak Volume	$: 1,045$	AM Peak Hour Factor

FLORIDA DEPARTMENT OF TRANSPORTATION
SUMMARY OF VEHICLE MOVEMENTS

Percentage	1.6\%	11.5\%	83.3\%	3.3\%	0.3\%	100.0\%	1.8\%	3.2\%	84.8\%	7.9\%	2.2\%	100.0\%	N/A	0.2\%	25.1\%	30.9\%	34.2\%	9.6\%	100.0\%	0.1\%	20.5\%	51.1\%	23.3\%	5.0\%	100.0\%	N/A
Maximum	19	179	937	44	6	1,184	34	51	1,228	135	35	1,416	2,457	3	105	131	164	42	393	1	50	125	77	18	268	581
Minimum	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Heavy Veh	23		199	10	1	233	2.0\%		249	16	6	280	513	2.5\%		22	22	3	64			17	4	0	30	94
\% Heavy Veh			3.0\%	3.8\%		2.9\%			3.3\%	2.5\%		3.2\%	3.1\%			2.7\%	2.2\%		2.4\%	2.9\%		2.2\%	0.9\%		2.0\%	2.3\%

APPENDIX B:

Existing Synchro Outputs And
 Signal Timing Sheets And Left Turn Phase Warrants

	EB	WB	NB	SB
Approach	34.0	34.1	121.9	122.0
Crosswalk Length (ft)	12.0	12.0	12.0	12.0
Crosswalk Width (ft)	3	3	7	7
Total Number of Lanes Crossed	0	0	0	0
Number of Right-Turn Islands	Actuated Actuated Actuated Actuated			
Type of Control	2	6	8	4
Corresponding Signal Phase	14.0	14.0	14.0	14.0
Effective Walk Time (s)	9.0	9.0	9.0	9.0
Right Corner Size A (ft)	9.0	9.0	9.0	9.0
Right Corner Size B (ft)	0.0	0.0	0.0	0.0
Right Corner Curb Radius (ft)	81.00	81.00	81.00	81.00
Right Corner Total Area (sq.ft)	0	0	0	0
Ped. Left-Right Flow Rate (p/h)	0	0	0	0
Ped. Right-Left Flow Rate (p/h)	0	0	0	0
Ped. R. Sidewalk Flow Rate (p/h)	104	48	54	100
Veh. Perm. L. Flow in Walk (v/h)	88	27	143	113
Veh. Perm. R. Flow in Walk (v/h)	0	0	0	0
Veh. RTOR Flow in Walk (v/h)	35	35	50	50
85th percentile speed (mph)	0.0	0.0	0.0	0.0
Right Corner Area per Ped (sq.ft)	-	-	-	-
Right Corner Quality of Service	0.0	0.0	0.0	0.0
Ped. Circulation Area (sq.ft)	-	-	-	-
Crosswalk Circulation Code	61.7	61.7	61.7	61.7
Pedestrian Delay (s/p)	Poor	Poor	Poor	Poor
Pedestrian Compliance Code	2.39	2.22	3.29	3.36
Pedestrian Crosswalk Score	B	B	C	C
Pedestrian Crosswalk LOS				

Approach	EB	WB	NB	SB
Bicycle Flow Rate (bike/h)	0	0	0	0
Total Flow Rate (veh//h)	363	334	1360	1138
Efft. Green for Bike (s)	35.0	35.0	84.0	75.9
Cross Street Width (ft)	121.9	122.0	34.1	34.0
Through Lanes Number	1	1	3	3
Through Lane Width (ft)	11.0	11.0	12.0	12.0
Bicycle Lane Width (ft)	0.0	0.0	5.0	5.0
Striped Parking Lane Width (ft)	0.0	0.0	0.0	0.0
Paved Shoulder Width (ft)	3.0	3.0	0.0	0.0
Curb Is Present?	No	No	No	No
On Street Parking?	No	No	No	No
Bicycle Lane Capacity (bike/h)	467	467	1120	1012
Bicycle Delay (sl/bike)	44.1	44.1	14.5	18.3
Bicycle Compliance	Poor	Poor	Fair	Fair
Bicycle LOS Score	3.59	3.55	1.76	1.63
Bicycle LOS	D	D	B	B

Splits and Phases: 3: Nova Rd \& Madeline Ave

Splits and Phases: 3: Nova Rd \& Madeline Ave

	EB	WB	NB	SB
Approach	34.0	34.1	121.9	122.0
Crosswalk Length (ft)	12.0	12.0	12.0	12.0
Crosswalk Width (ft)	3	3	7	7
Total Number of Lanes Crossed	0	0	0	0
Number of Right-Turn Islands	Actuated Actuated Actuated Actuated			
Type of Control	2	6	8	4
Corresponding Signal Phase	14.0	14.0	14.0	14.0
Effective Walk Time (s)	9.0	9.0	9.0	9.0
Right Corner Size A (ft)	9.0	9.0	9.0	9.0
Right Corner Size B (ft)	0.0	0.0	0.0	0.0
Right Corner Curb Radius (ft)	81.00	81.00	81.00	81.00
Right Corner Total Area (sq.ft)	0	0	0	0
Ped. Left-Right Flow Rate (p/h)	0	0	0	0
Ped. Right-Left Flow Rate (p/h)	0	0	0	0
Ped. R. Sidewalk Flow Rate (p/h)	192	70	52	86
Veh. Perm. L. Flow in Walk (v/h)	145	54	164	52
Veh. Perm. R. Flow in Walk (v/h)	0	0	0	0
Veh. RTOR Flow in Walk (v/h)	35	35	50	50
85th percentile speed (mph)	0.0	0.0	0.0	0.0
Right Corner Area per Ped (sq.ft)	-	-	-	-
Right Corner Quality of Service	0.0	0.0	0.0	0.0
Ped. Circulation Area (sq.ft)	-	-	-	-
Crosswalk Circulation Code	66.6	66.6	66.6	66.6
Pedestrian Delay (s/p)	Poor	Poor	Poor	Poor
Pedestrian Compliance Code	2.57	2.26	3.35	3.38
Pedestrian Crosswalk Score	C	B	C	C
Pedestrian Crosswalk LOS				

Approach	EB	WB	NB	SB
Bicycle Flow Rate (bike/h)	0	0	0	0
Total Flow Rate (veh//h)	416	222	1264	1573
Efft. Green for Bike (s)	34.4	34.4	89.7	79.9
Cross Street Width (ft)	121.9	122.0	34.1	34.0
Through Lanes Number	1	1	3	3
Through Lane Width (ft)	11.0	11.0	12.0	12.0
Bicycle Lane Width (ft)	0.0	0.0	5.0	5.0
Striped Parking Lane Width (ft)	0.0	0.0	0.0	0.0
Paved Shoulder Width (ft)	3.0	3.0	0.0	0.0
Curb Is Present?	No	No	No	No
On Street Parking?	No	No	No	No
Bicycle Lane Capacity (bike/h)	430	430	1121	999
Bicycle Delay (sl/bike)	49.3	49.3	15.4	20.1
Bicycle Compliance	Poor	Poor	Fair	Fair
Bicycle LOS Score	3.68	3.36	1.70	1.87
Bicycle LOS	D	C	B	B

APPENDIX C: Crash Data

Crash Data Summary - Madeline Ave at S Nova Road

No.	Crash ID	Date	Day	Time	Hour	Year	Crash Type	Crash Severity	Fatalities	Injuries	Property Damage	Day/Night	Wet/Dry	Alcohol Related	$\begin{gathered} \hline \text { Drug } \\ \text { Related } \end{gathered}$
1	89398399	3/11/2021	Thursday	12:10 PM	12	2021	Angle	No Injury	0	0	\$0	Daylight	Dry	N	N
2	24033118	4/2/2021	Friday	4:25 PM	16	2021	Rear End	Injury	0	1	\$0	Daylight	Dry	N	N
3	87119106	11/21/2017	Tuesday	1:25 AM	01	2017	Angle	Injury	0	3	\$3,000	Dark - Not Lighted	Dry	N	N
4	87740124	8/25/2019	Sunday	3:50 PM	15	2019	Rear End	No Injury	0	0	\$0	Daylight	Dry	N	N
5	87510020	9/15/2018	Saturday	10:14 AM	10	2018	Rear End	Injury	0	2	\$0	Daylight	Dry	N	N
6	86396450	5/25/2018	Friday	6:58 PM	18	2018	Off Road	No Injury	0	0	\$0	Daylight	Dry	N	N
7	87740743	11/27/2019	Wednesday	7:13 AM	07	2019	Rear End	No Injury	0	0	\$0	Daylight	Dry	N	N
8	85812774	2/3/2016	Wednesday	4:35 PM	16	2016	Rear End	No Injury	0	0	\$0	Daylight	Dry	N	N
9	87740387	12/2/2019	Monday	5:12 PM	17	2019	Off Road	Injury	0	2	\$0	Daylight	Dry	N	N
10	85813453	7/18/2016	Monday	12:34 PM	12	2016	Rear End	No injury	0	0	\$0	Daylight	Dry	N	N
11	86396149	1/12/2017	Thursday	7:19 AM	07	2017	Rear End	No Injury	0	0	\$0	Daylight	Dry	N	N
12	87738917	1/13/2019	Sunday	2:02 PM	14	2019	Angle	No Injury	0	0	\$0	Daylight	Dry	N	N
13	87740504	12/23/2019	Monday	4:06 PM	16	2019	Sideswipe	No Injury	0	0	\$0	Daylight	Dry	N	N
14	87510617	1/4/2019	Friday	7:00 PM	19	2019	Rear End	No Injury	0	0	\$0	Dark - Lighted	Wet	N	N
15	24032702	1/16/2021	Saturday	9:20 AM	09	2021	Sideswipe	No Injury	0	0	\$0	Daylight	Dry	N	N
16	87740275	9/20/2019	Friday	3:35 PM	15	2019	Rear End	No Injury	0	0	\$0	Daylight	Dry	N	N
17	87739715	6/30/2019	Sunday	11:45 PM	23	2019	Left Turn	No Injury	0	0	\$0	Dark - Not Lighted	Dry	N	N
18	87739595	3/27/2019	Wednesday	7:48 PM	19	2019	Left Turn	Injury	0	1	\$0	Dark - Not Lighted	Wet	N	N
19	87510338	10/6/2018	Saturday	11:40 PM	23	2018	Left Turn	No Injury	0	0	\$0	Dark - Not Lighted	Dry	N	N
20	87510318	3/11/2018	Sunday	9:19 PM	21	2018	Rear End	No Injury	0	0	\$0	Dark - Not Lighted	Dry	N	N
21	87509976	8/19/2018	Sunday	2:37 PM	14	2018	Sideswipe	No Injury	0	0	\$0	Daylight	Dry	N	N
22	87739517	11/4/2019	Monday	6:34 PM	18	2019	Angle	No Injury	0	0	\$0	Dark - Lighted	Wet	N	N
23	86751680	4/19/2017	Wednesday	11:08 AM	11	2017	Angle	Serious Injury	0	2	\$0	Daylight	Dry	N	N
24	86751570	10/8/2017	Sunday	11:06 AM	11	2017	Angle	Serious Injury	0	3	\$0	Daylight	Dry	N	N
25	86396460	11/3/2017	Friday	5:44 PM	17	2017	Rear End	Injury	0	1	\$0	Daylight	Dry	N	N
26	86396372	7/22/2017	Saturday	3:03 PM	15	2017	Left Turn	Injury	0	1	\$0	Daylight	Wet	N	N
27	86396537	2/24/2017	Friday	9:50 AM	09	2017	Off Road	No Injury	0	0	\$0	Daylight	Dry	N	N
28	85813308	7/1/2016	Friday	2:31 AM	02	2016	Rear End	Injury	0	1	\$0	Dark - Not Lighted	Dry	Y	N
29	8454190	1/28/2016	Thursday	1:50 AM	01	2016	Other	No Injury	0	0	\$0	Dark - Not Lighted	Wet	N	N
30	85812450	3/6/2016	Sunday	6:37 PM	18	2016	Rear End	No Injury	0	0	\$0	Daylight	Dry	N	N
31	85812803	2/10/2016	Wednesday	1:53 PM	13	2016	Rear End	No Injury	0	0	\$0	Daylight	Dry	N	N
32	85813147	4/26/2016	Tuesday	9:32 AM	09	2016	Right Turn	No Injury	0	0	\$0	Daylight	Dry	N	N
33	87509882	8/17/2018	Friday	1:10 PM	13	2018	Left Turn	No Injury	0	0	\$0	Daylight	Dry	N	N
34	87510652	3/17/2019	Sunday	2:04 PM	14	2019	Sideswipe	No Injury	0	0	\$0	Daylight	Wet	N	N
35	87739184	2/1/2019	Friday	1:40 PM	13	2019	Sideswipe	No Injury	0	0	\$0	Daylight	Dry	N	N
36	86396485	12/30/2017	Saturday	7:45 PM	19	2017	Rear End	No Injury	0	0	\$0	Dark - Lighted	Dry	N	N
37	87509791	3/31/2018	Saturday	5:15 PM	17	2018	Rear End	Serious Injury	0	2	\$0	Daylight	Dry	Y	,
38	87740730	11/11/2019	Monday	6:50 PM	18	2019	Rear End	Injury	0	1	\$0	Dark - Not Lighted	Dry	N	N
39	86396511	2/27/2017	Monday	4:18 PM	16	2017	Rear End	No Injury	0	0	\$0	Daylight	Dry	N	N
40	87510381	8/29/2018	Wednesday	8:19 AM	08	2018	Rear End	Injury	0	1	\$0	Daylight	Dry	N	N
41	87509716	11/16/2017	Thursday	3:27 PM	15	2017	Rear End	Injury	0	2	\$0	Daylight	Dry	N	N
42	24033383	2/1/2021	Monday	3:41 PM	15	2021	Sideswipe	No Injury	0	0	\$0	Daylight	Dry	N	N
43	24032251	11/1/2020	Sunday	1:20 AM	01	2020	Rollover	Injury	0	2	\$0	Dark - Not Lighted	Dry	N	N
44	24032492	8/13/2020	Thursday	9:09 AM	09	2020	Sideswipe	No Injury	0	0	\$0	Daylight	Dry	N	N
45	24032430	11/7/2020	Saturday	6:34 PM	18	2020	Off Road	No Injury	0	0	\$1,000	Dark - Not Lighted	Dry	N	N
46	24032474	8/8/2020	Saturday	12:01 AM	00	2020	Left Turn	Fatality	1	2	\$5,000	Dark - Lighted	Wet	Y	Y
47	24032824	11/17/2020	Tuesday	5:46 PM	17	2020	Left Turn	Injury	0	1	\$0	Dusk	Dry	N	
48	86751713	11/20/2017	Monday	6:10 PM	18	2017	Left Turn	No Injury	0	0	\$0	Dusk	Dry	N	N
49	87738602	4/27/2019	Saturday	9:00 PM	21	2019	Other	No Injury	0	0	\$0	Dark - Lighted	Dry	Y	N
50	87739836	5/30/2019	Thursday	11:27 AM	11	2019	Rear End	Injury	0	1	\$0	Daylight	Dry	N	N
51	89399168	10/20/2021	Wednesday	8:15 PM	20	2021	Left Turn	No Injury	0	0	\$0	Dark - Lighted	Dry	N	
52	89399323	12/1/2021	Wednesday	2:07 PM	14	2021	Right Turn	No Injury	0	0	\$0	Daylight	Dry	N	N
53	89399146	10/13/2021	Wednesday	1:40 PM	13	2021	Left Turn	No Injury	0	0	\$0	Daylight	Dry	N	N
54	89399087	9/29/2021	Wednesday	8:00 PM	20	2021	Left Turn	Injury	0	1	\$0	Dark - Lighted	Dry	N	N
55	87741199	2/28/2020	Friday	11:10 AM	11	2020	Angle	No Injury	0	0	\$0	Daylight	Dry	N	N
56	87741294	5/26/2020	Tuesday	9:55 AM	09	2020	Angle	Injury	0	2	\$0	Daylight	Wet	N	N
57	24032214	10/8/2020	Thursday	6:10 PM	18	2020	Rear End	Injury	0	1	\$0	Daylight	Dry	N	N
58	24032575	10/27/2020	Tuesday	4:32 PM	16	2020	Sideswipe	Injury	0	1	\$0	Daylight	Dry	N	N
59	24032062	10/5/2020	Monday	1:00 PM	13	2020	Rear End	Injury	0	1	\$0	Daylight	Dry	N	
60	89398566	5/4/2021	Tuesday	8:20 PM	20	2021	Left Turn	No Injury	0	0	\$0	Dark - Lighted	Wet	N	,
61	89399051	9/17/2021	Friday	5:10 PM	17	2021	Rear End	Injury	0	1	\$0	Daylight	Dry	N	N
62	24032490	8/25/2020	Tuesday	10:33 AM	10	2020	Rear End	No Injury	0	0	\$0	Daylight	Dry	N	N
63	89398881	8/4/2021	Wednesday	9:50 PM	21	2021	Right Turn	No Injury	0	0	\$0	Dark - Lighted	Wet	Y	N
64	24032113	8/3/2020	Monday	5:44 AM	05	2020	Off Road	No Injury	0	0	\$300	Dark-Lighted	Dry	N	N
65	86752386	4/11/2018	Wednesday	7:55 PM	19	2018	Left Turn	Injury	0	1	\$0	Dark-Lighted	Dry	N	
66	24032094	6/3/2020	Wednesday	4:21 PM	16	2020	Rear End	No Injury	0	0	\$0	Daylight	Dry	N	N

Crash Data Summary - Madeline Ave at S Nova Road

No.	Crash ID	Date	Day	Time	Hour	Year	Crash Type	Crash Severity	Fatalities	Injuries	Property Damage	Day/Night	Wet/Dry	Alcohol Related	$\begin{gathered} \hline \text { Drug } \\ \text { Related } \end{gathered}$
67	87740785	12/6/2019	Friday	3:43 PM	15	2019	Rear End	Injury	0	1	\$0	Daylight	Dry	N	N
68	89398892	8/6/2021	Friday	1:11 PM	13	2021	Bicycle	Serious Injury	0	1	\$250	Daylight	Dry	N	N
69	24032246	8/22/2020	Saturday	10:00 AM	10	2020	Rear End	Injury	0	1	\$0	Daylight	Dry	N	N
70	87741290	3/7/2020	Saturday	8:43 PM	20	2020	Rear End	No Injury	0	0	\$0	Dark - Lighted	Dry	N	N
71	89398655	5/31/2021	Monday	10:05 AM	10	2021	Rear End	Injury	0	2	\$0	Daylight	Dry	N	N

APPENDIX D:
Future Traffic Development

Traffic Trends - V03.a
NOVA RD (NEW) -- Madeline Ave to Big Tree

County:	Volusia (79)
Station \#:	363
Highway:	NOVA RD (NEW)

${ }^{* *}$ Annual Trend Increase:	36	
Trend R-squared:	1.14%	
Trend Annual Historic Growth Rate:	0.11%	
	Trend Growth Rate (2019 to Design Year):	0.14%
Printed:	21-Jan-22	
Straight Line Growth Option		

Year	Traffic (ADT/AADT)	
	Count*	Trend**
2009	27500	26900
2010	28500	26900
2011	27000	26900
2012	25500	27000
2013	26500	27000
2014	26500	27000
2015	26500	27100
2016	27000	27100
2017	26000	27200
2018	27000	27200
2019	29500	27200
2025 Opening Year Trend		
2025	N/A	27400
2035 Mid-Year Trend		
2035	N/A	27800
2045 Design Year Trend		
2045	N/A	28200
TRANPLAN Forecasts/Trends		

*Axle-Adjusted

Traffic Trends - V03.a
NOVA RD (NEW) -- SR 421 to Madeline Ave

FIN\#	1234
Location	1

County:	Volusia (79)
Station \#:	1017
Highway:	NOVA RD (NEW)

| ${ }^{* *}$ Annual Trend Increase: | 86 |
| ---: | ---: | ---: |
| Trend R-squared: | 17.52% |
| Trend Annual Historic Growth Rate: | 0.34% |
| Trend Growth Rate (2019 to Design Year): | 0.33% |
| Printed: | $21-$ Jan-22 |
| Straight Line Growth Option | |

Year	Traffic (ADT/AADT)	
	Count*	Trend**
2009	26500	26300
2010	27000	26400
2011	26500	26500
2012	25500	26600
2013	26000	26700
2014	27000	26800
2015	28000	26900
2016	26500	26900
2017	27500	27000
2018	27000	27100
2019	27000	27200
2025 Opening Year Trend		
2025	N/A	27700
2035 Mid-Year Trend		
2035	N/A	28600
2045 Design Year Trend		
2045	N/A	29500
TRANPLAN Forecasts/Trends		

*Axle-Adjusted

Projections of Florida Population by County, 2025-2045, with Estimates for 2020

Stefan Rayer, Population Program Director
Ying Wang, Research Demographer

The Bureau of Economic and Business Research (BEBR) has been making population projections for Florida and its counties since the 1970s. This report presents our most recent set of projections and describes the methodology used to construct those projections. To account for uncertainty regarding future population growth, we publish three series of projections. We believe the medium series is the most likely to provide accurate forecasts in most circumstances, but the low and high series provide an indication of the uncertainty surrounding the medium series. It should be noted that these projections refer solely to permanent residents of Florida; they do not include tourists or seasonal residents. Furthermore, we note that this set of projections is still based on the Census 2010 counts and the BEBR population estimates since then. The next set of BEBR county projections, scheduled for release in early 2022, will incorporate the Census 2020 counts.

State projections

The starting point for the state-level projections was the April 1, 2010 census population count by age, sex, race, and Hispanic origin, as adjusted by the National Center for Health Statistics (NCHS) in the Vintage 2017 bridged race population estimates. Projections were made in one-year intervals using a cohortcomponent methodology in which births, deaths, and migration are projected separately for each agesex cohort in Florida for non-Hispanic whites, nonHispanic nonwhites, and Hispanics. We applied three
different sets of assumptions to provide low, medium, and high series of projections. Although the low and high series do not provide absolute bounds on future population change, they provide a reasonable range in which Florida's future population is likely to fall.

Survival rates were applied by single year of age, sex, race, and Hispanic origin to project future deaths in the population. These rates were based on Florida Life Tables for 2012-2018, using mortality data published by the Office of Vital Statistics in the Florida Department of Health. The survival rates were adjusted upward each year until 2044 to account for projected increases in life expectancy. These adjustments were based on projected increases in survival rates released by the U.S. Census Bureau. We used the same mortality assumptions for all three series of projections because there is less uncertainty regarding future changes in mortality rates than is true for migration and fertility rates.

Domestic migration rates by age and sex were based on Public Use Microdata Sample (PUMS) files from the 2010-2019 American Community Survey (ACS) 1year estimates, and the 2014-2018 and 2015-2019 ACS 5-year estimates. We first calculated an average of the 2010-2018 1-year estimates and the 20142018 5-year estimates. Next, we calculated an average of the 2011-2019 1-year estimates and the 2015-2019 5-year estimates. Our final domestic migration rates were based on an average of these two

Projections of Florida Population by County, 2025-2045, with Estimates for 2020 (continued)

County	Estimates					
and State	April 1, 2020	2025	2030	2035	2040	2045
SANTA ROSA	184,653					
Low		182,000	187,800	191,600	194,400	195,700
Medium		201,800	215,900	227,800	238,700	248,500
High		220,200	244,000	267,100	290,100	313,300
SARASOTA	438,816					
Low		432,900	442,400	449,000	453,100	454,900
Medium		472,100	498,200	520,400	539,900	557,500
High		507,100	549,800	588,600	625,900	661,900
SEMINOLE	476,727					
Low		471,200	480,600	487,500	491,400	492,200
Medium		505,100	528,500	548,400	565,100	579,400
High		537,900	578,400	614,700	648,100	678,300
SUMTER	141,422					
Low		148,800	162,100	171,400	178,000	182,100
Medium		167,800	190,000	208,200	223,800	237,900
High		185,000	218,000	249,600	280,000	310,600
SUWANNEE	45,463					
Low		44,100	44,400	44,400	44,200	43,900
Medium		47,200	48,700	49,900	50,800	51,700
High		50,600	53,800	56,800	59,400	62,000
TAYLOR	22,436					
Low		20,900	20,400	19,900	19,300	18,600
Medium		22,800	23,000	23,100	23,200	23,300
High		24,700	25,800	26,800	27,700	28,600
UNION	15,410					
Low		14,300	14,000	13,500	13,100	12,600
Medium		15,600	15,700	15,800	15,800	15,800
High		16,900	17,600	18,300	18,800	19,300
VOLUSIA	551,588					
Low		544,700	553,500	558,000	560,500	561,900
Medium		583,900	608,900	628,800	646,100	662,000
High		621,800	666,200	703,500	739,300	774,300
WAKULLA	33,981					
Low		33,400	34,200	34,700	34,800	34,700
Medium		36,400	38,400	40,100	41,400	42,600
High		39,300	42,900	46,400	49,400	52,300
WALTON	74,724					
Low		76,100	81,300	85,000	87,900	90,200
Medium		85,900	95,500	103,600	110,900	117,900
High		94,600	109,300	123,800	138,300	153,900
WASHINGTON	25,334					
Low		24,100	23,900	23,600	23,200	22,700
Medium		26,200	26,800	27,300	27,700	28,100
High		28,400	30,200	31,800	33,300	34,800
FLORIDA	21,596,068					
Low		22,164,100	23,037,100	23,650,600	24,090,900	24,405,600
Medium		23,138,600	24,419,100	25,461,900	26,356,400	27,149,800
High		24,109,200	25,798,900	27,275,900	28,634,200	29,921,300

UNIVERSITY of HDOBTDA	Bureau of Economic and Business Research College of Liberal Arts and Sciences 720 SW $2^{\text {nd }}$ Avenue, Suite 150, P.O. Box 117148 Gainesville, Florida 32611-7148	Phone (352) 392-0171 www.bebr.ufl.edu

Future Land Use and Zoning - Northeast and Southeast Quadrants

3401 Nova Rd.
Acreage: +/- 15.5 acres
FLU: Commercial (FAR 0.5)
Zoning: PCD without an MDA
Estimated Buildable Sq.ft. $=270,000$

950 Madeline Ave.
Acreage: +/- 8.11 acres FLU: Commercial (FAR 0.5)
Zoning: R-3M (12 units/acre)

Estimated Buildable Sq.ft. $=141,300$

ITE Trip Generation Manual Vested Trips Calculation - AM Peak Hour

Query Filer	
DATA SOURCE:	
Trip Generation Manual, 11th Ed	\checkmark
SEARCH BY LAND USE CODE:	
821 Q	
LAND USE GROUP:	
(800-899) Retail	\checkmark
LAND USE:	
821 - Shopping Plaza (40-150k)	\checkmark
LAND USE SUBCATEGORY:	
Supermarket - Yes	\checkmark
SEtting_location:	
General Urban/Suburban	\checkmark
INDEPENDENT VARIABLE (IV):	
1000 Sq. Ft. GLA	\checkmark
time Period:	
Weekday, Peak Hour of Adjacent Street Traffic \checkmark	
TRIP TYPE:	
Vehicle	\checkmark
ENTER IV VALUE TO CALCULATE TRIPS:	
67.5 Calculate	

ITE Trip Generation Manual Vested Trips Calculation - PM Peak Hour

DATA STATISTICS
Land Use: Shopping Plaza ($40-150 \mathrm{k}$) - Supermarket - Yes (82 Click for Description and Dala Plots
Independent Variable: 1000 Sq. Ft GLA
Time Period: Weekday Peak Hour of Adjacent Street Traffic One Hour Between 4 and 6 p.m
Setting/Location: General Urban/Suburban
Trip Type: Vehicle
Number of Studies: 51
Avg. 1000 Sq. Ft. GLA: 87
Average Rate 9.03
Range of Rates: $5.35-16.45$
Standard Deviation: 2.37
Fitted Curve Equation: $T=7.67(X)+118.86$
$\begin{aligned} & R^{2} \\ & 0.62 \end{aligned}$
Directional Distribution: 48% entering, 52% exiting
Calculated Trip Ends: Average Rate: 610 (Total), 293 (Entry), 317 (Exit) Fitted Curve: 637 (Total), 306 (Entry), 331 (Exit)
DATA STATISTICS
Land Use: Strip Retail Plaza ($<40 \mathrm{k}$) (822) Click for Description and Data Plots
Independent Variable: 1000 Sq. Ft. GLA
Time Period: Weekday Peak Hour of Adjacent Street Traffic One Hour Between 4 and 6 p.m.
Setting/Location: General Urban/Suburban
Trip Type: Vehicle
Number of Studies: 25
Avg. 1000 Sq. Ft. GLA: 21
Average Rate: 6.59
Range of Rates $2.81-15.20$
Standard Deviation: 2.94
Fitted Curve Equation: $\operatorname{Ln}(T)=0.71 \operatorname{Ln}(X)+2.72$
$\begin{aligned} & \mathbf{R}^{2} \\ & 0.56 \end{aligned}$
Directional Distribution: 50% entering. 50% exiting
Calculated Trip Ends: Average Rate: 234 (Total), 117 (Entry), 117 (Exit) Fitted Curve: 191 (Total), 95 (Entry), 96 (Exit)

FUTURE TURNING MOVEMENT COUNT CALCULATION - BACKGROUND PLUS POTENTIAL VESTED TRIPS

Study Intersection		2021 AM	2025 Background		Project Trips	Total 2025 AM	2021 PM	2025 Ba	ckground	Project Trips	Total 2025 PM	
		Growth	2025 AM	Growth				2025 PM				
Madeline Avenue	EBL		100	1\%	104	8	112	86	1\%	89	16	105
	EBT	84	1\%	87	26	113	161	1\%	167	58	225	
	EBR	143	1\%	149		149	164	1\%	171		171	
	WBL	54	1\%	56	6	62	52	1\%	54	25	79	
	WBT	133	1\%	138	14	152	115	1\%	120	57	177	
	WBR	113	1\%	118	12	130	52	1\%	54	26	80	
Nova Road	NBL	104	1\%	108	5	113	192	1\%	200	10	210	
	NBT	1,093	1\%	1,137	122	1,259	1,005	1\%	1,045	282	1,327	
	NBR	27	1\%	28	8	36	54	1\%	56	19	75	
	SBL	48	1\%	50	16	66	70	1\%	73	25	98	
	SBT	888	1\%	924		924	1,342	1\%	1,396		1,396	
	SBR	88	1\%	92		92	145	1\%	151		151	

APPENDIX E:

2025 Synchro Analysis Outputs

	$\stackrel{ }{*}$			7			4	\uparrow	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	$\hat{1}$		\％	\hat{F}		${ }^{7}$	惺家		\％	惺施	
Trafic Volume（vph）	112	113	149	62	152	130	113	1259	36	66	924	92
Future Volume（vph）	112	113	149	62	152	130	113	1259	36	66	924	92
Satd．Flow（prot）	1728	1673	0	1745	1676	0	1805	5068	0	1805	4974	0
Flt Permitted	0.269			0.312			0.950			0.950		
Satd．Flow（perm）	489	1673	0	573	1676	0	1805	5068	0	1805	4974	0
Satd．Flow（RTOR）		47			30			3			13	
Lane Group Flow（vph）	124	292	0	69	313	0	126	1439	0	73	1129	0
Turn Type	Perm	NA		Perm	NA		Prot	NA		Prot	NA	
Protected Phases		8			4		1	6		5	2	
Permitted Phases	8			4								
Total Split（s）	57.0	57.0		57.0	57.0		30.0	69.0		24.0	63.0	
Total Lost Time（s）	11.5	8.5		11.5	8.5		8.6	7.1		8.6	7.1	
Act Effct Green（s）	30.4	33.4		30.4	33.4		15.7	81.0		11.4	76.7	
Actuated g／C Ratio	0.20	0.22		0.20	0.22		0.10	0.54		0.08	0.51	
v / c Ratio	1.25	0.72		0.60	0.79		0.67	0.53		0.53	0.44	
Control Delay	221.7	53.9		73.3	63.3		81.1	24.7		80.1	25.4	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	221.7	53.9		73.3	63.3		81.1	24.7		80.1	25.4	
LOS	F	D		E	E		F	C		F	C	
Approach Delay		103.9			65.1			29.3			28.8	
Approach LOS		F			E			C			C	
Intersection Summary												
Cycle Length： 150												
Actuated Cycle Length： 150												
Offset： 85 （ 57% ），Referenced to phase 2：SBT and 6：NBT，Start of Yellow												
Control Type：Actuated－Coordinated												
Maximum v／c Ratio： 1.25												
Intersection Signal Delay： 41.6				Intersection LOS：D								
Intersection Capacity Utilization 85．8\％				ICU Level of Service E								
Analysis Period（min） 15												

Splits and Phases：3：Nova Rd \＆Madeline Ave

Network Totals

Number of Intersections	1
Total Defay (hr)	37
Stops (\#)	2007
Average Speed (mph)	12
Total Travel Time (hr)	50
Distance Traveled (mi)	587
Fuel Consumed (gal)	77
Fuel Economy (mpg)	7.7
Unserved Vehicles (\#)	0
Vehicles in dilemma zone (\#)	90
Performance Index	43.3

	EB	WB	NB	SB
Approach	34.0	34.1	121.9	122.0
Crosswalk Length (ft)	12.0	12.0	12.0	12.0
Crosswalk Width (ft)	3	3	7	7
Total Number of Lanes Crossed	0	0	0	0
Number of Right-Turn Islands	Actuated Actuated Actuated Actuated			
Type of Control	2	6	8	4
Corresponding Signal Phase	14.0	14.0	14.0	14.0
Effective Walk Time (s)	9.0	9.0	9.0	9.0
Right Correr Size A (ft)	9.0	9.0	9.0	9.0
Right Corner Size B (ft)	0.0	0.0	0.0	0.0
Right Corner Curb Radius (ft)	81.00	81.00	81.00	81.00
Right Corner Total Area (sq.ft)	0	0	0	0
Ped. Left-Right Flow Rate (p/h)	0	0	0	0
Ped. Right-Left Flow Rate (p/h)	0	0	0	0
Ped. R. Sidewalk Flow Rate (p/h)	113	66	62	112
Veh. Perm. L. Flow in Walk (v/h)	92	36	149	130
Veh. Perm. R. Flow in Walk (v/h)	0	0	0	0
Veh. RTOR Flow in Walk (v/h)	35	35	50	50
85th percentile speed (mph)	0.0	0.0	0.0	0.0
Right Corne Area per Ped (sq.ft)	-	-	-	-
Right Corner Quality of Service	0.0	0.0	0.0	0.0
Ped. Circulation Area (sq.ft)	0.0	-		
Crosswalk Circulation Code	-	-	-	-
Pedestrian Delay (s/p)	61.7	61.7	61.7	61.7
Pedestrian Compliance Code	Poor	Poor	Poor	Poor
Pedestrian Crosswalk Score	2.43	2.29	3.36	3.44
Pedestrian Crosswalk LOS	B	B	C	C

Approach	EB	WB	NB	SB
Bicycle Flow Rate (bike/h)	0	0	0	0
Total Flow Rate (veh/h)	416	382	1565	1202
Effct. Green for Bike (s)	33.4	33.4	81.0	76.7
Cross Street Width (ft)	121.9	122.0	34.1	34.0
Through Lanes Number	1	1	3	3
Through Lane Width (ft)	11.0	11.0	12.0	12.0
Bicycle Lane Width (ft)	0.0	0.0	5.0	5.0
Striped Parking Lane Width (ft)	0.0	0.0	0.0	0.0
Paved Shoulder Width (ft)	3.0	3.0	0.0	0.0
Curb Is Present?	No	No	No	No
On Street Parking?	No	No	No	No
Bicycle Lane Capacity (bike/h)	445	445	1080	1023
Bicycle Delay (s/bike)	45.3	45.3	15.9	17.9
Bicycle Compliance	Poor	Poor	Fair	Fair
Bicycle LOS Score	3.68	3.63	1.87	1.67
Bicycle LOS	D	D	B	B

	4							\uparrow			\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	$\hat{1}$		\％	$\hat{1}$		${ }^{7}$	㙟		7	惺家	
Traffic Volume（vph）	105	225	171	79	177	80	210	1327	75	98	1396	151
Future Volume（vph）	105	225	171	79	177	80	210	1327	75	98	1396	151
Satd．Flow（prot）	1662	1703	0	1745	1716	0	1787	5050	0	1787	5054	0
FIt Permitted	0.411			0.165			0.950			0.950		
Satd．Flow（perm）	719	1703	0	303	1716	0	1787	5050	0	1787	5054	0
Satd．Flow（RTOR）		24			14			7			14	
Lane Group Flow（vph）	106	400	0	80	260	0	212	1416	0	99	1563	0
Turn Type	Perm	NA		Perm	NA		Prot	NA		Prot	NA	
Protected Phases		8			4		1	6		5	2	
Permitted Phases	8			4								
Total Split（s）	53.0	53.0		53.0	53.0		36.0	81.8		25.2	71.0	
Total Lost Time（s）	11.5	8.5		11.5	8.5		8.6	7.1		8.6	7.1	
Act Effct Green（s）	37.4	40.4		37.4	40.4		23.2	81.8		13.6	72.2	
Actuated g／C Ratio	0.23	0.25		0.23	0.25		0.14	0.51		0.08	0.45	
V / c Ratio	0.63	0.89		1.14	0.59		0.82	0.55		0.65	0.68	
Control Delay	71.8	76.5		202.5	54.6		90.1	28.4		90.3	37.8	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	71.8	76.5		202.5	54.6		90.1	28.4		90.3	37.8	
LOS	E	E		F	D		F	C		F	D	
Approach Delay		75.5			89.4			36.4			40.9	
Approach LOS		E			F			D			D	
Intersection Summary												
Cycle Length： 160												
Actuated Cycle Length： 160												
Offset： 153 （96\％），Referenced to phase 2：SBT and 6：NBT，Start of Yellow												
Control Type：Actuated－Coordinated												
Maximum v／c Ratio： 1.14												
Intersection Signal Delay： 47.4				Intersection LOS：D								
Intersection Capacity Utilization 103．2\％				ICU Level of Service G								

Analysis Period（min） 15
Splits and Phases：3：Nova Rd \＆Madeline Ave

Network Totals

Number of Intersections	1
Total Delay (hr)	54
Stops (\#)	3149
Average Speed (mph)	11
Total Travel Time (hr)	70
Distance Traveled (mi)	758
Fuel Consumed (gal)	108
Fuel Economy (mpg)	7.0
Unserved Vehicles (\#)	1
Vehicles in dilemma zone (\#)	109
Performance Index	62.6

	EB	WB	NB	SB
Approach	34.0	34.1	121.9	122.0
Crosswalk Length (ft)	12.0	12.0	12.0	12.0
Crosswalk Width (ft)	3	3	7	7
Total Number of Lanes Crossed	0	0	0	0
Number of Right-Turn Islands	Actuated Actuated Actuated Actuated			
Type of Control	2	6	8	4
Corresponding Signal Phase	14.0	14.0	14.0	14.0
Effective Walk Time (s)	9.0	9.0	9.0	9.0
Right Correr Size A (ft)	9.0	9.0	9.0	9.0
Right Corner Size B (ft)	0.0	0.0	0.0	0.0
Right Corner Curb Radius (ft)	81.00	81.00	81.00	81.00
Right Corner Total Area (sq.ft)	0	0	0	0
Ped. Left-Right Flow Rate (p/h)	0	0	0	0
Ped. Right-Left Flow Rate (p/h)	0	0	0	0
Ped. R. Sidewalk Flow Rate (p/h)	210	98	79	105
Veh. Perm. L. Flow in Walk (v/h)	151	75	171	80
Veh. Perm. R. Flow in Walk (v/h)	0	0	0	0
Veh. RTOR Flow in Walk (v/h)	35	35	50	50
85th percentile speed (mph)	0.0	0.0	0.0	0.0
Right Corne Area per Ped (sq.ft)	0.0	-		
Right Corner Quality of Service	-	-	-	-
Ped. Circulation Area (sq.ft)	0.0	0.0	0.0	0.0
Crosswalk Circulation Code	-	-	-	-
Pedestrian Delay (s/p)	66.6	66.6	66.6	66.6
Pedestrian Compliance Code	Poor	Poor	Poor	Poor
Pedestrian Crosswalk Score	2.66	2.39	3.50	3.51
Pedestrian Crosswalk LOS	C	B	C	D

Approach	EB	WB	NB	SB
Bicycle Flow Rate (bike/h)	0	0	0	0
Total Flow Rate (veh/h)	506	340	1628	1662
Effct. Green for Bike (s)	40.4	40.4	81.8	72.2
Cross street Width (ft)	121.9	122.0	34.1	34.0
Through Lanes Number	1	1	3	3
Through Lane Width (ft)	11.0	11.0	12.0	12.0
Bicycle Lane Width (ft)	0.0	0.0	5.0	5.0
Striped Parking Lane Width (ft)	0.0	0.0	0.0	0.0
Paved Shoulder Width (ft)	3.0	3.0	0.0	0.0
Curb Is Present?	No	No	No	No
On Street Parking?	No	No	No	No
Bicycle Lane Capacity (bike/h)	505	505	1023	902
Bicycle Delay (s/bike)	44.7	44.7	19.1	24.1
Bicycle Compliance	Poor	Poor	Fair	Fair
Bicycle LOS Score	3.83	3.56	1.90	1.92
Bicycle LOS	D	D	B	B

Splits and Phases: 3: Nova Rd \& Madeline Ave

3: Nova Rd \& Madeline Ave

Direction	All
Future Volume (vph)	3208
Total Delay (hr)	31
Stops (\#)	2365
Average Speed (mph)	13
Total Travel Time (hr)	44
Distance Traveled (mi)	587
Fuel Consumed (gal)	76
Fuel Economy (mpg)	7.7
Unserved Vehicles (\#)	0
Vehicles in dilemma zone (\#)	103

	EB	WB	NB	SB
Approach	45.1	45.0	122.7	122.5
Crosswalk Length (ft)	12.0	12.0	12.0	12.0
Crosswalk Width (ft)	4	4	7	7
Total Number of Lanes Crossed	0	0	0	0
Number of Right-Turn Islands	Actuated Actuated Actuated Actuated			
Type of Control	2	6	8	4
Corresponding Signal Phase	14.0	14.0	14.0	14.0
Effective Walk Time (s)	9.0	9.0	9.0	9.0
Right Corner Size A (ft)	9.0	9.0	9.0	9.0
Right Corner Size B (ft)	0.0	0.0	0.0	0.0
Right Corner Curb Radius (ft)	81.00	81.00	81.00	81.00
Right Corner Total Area (sq.ft)	0	0	0	0
Ped. Left-Right Flow Rate (p/h)	0	0	0	0
Ped. Right-Left Flow Rate (p/h)	0	0	0	0
Ped. R. Sidewalk Flow Rate (p/h)	113	66	62	112
Veh. Perm. L. Flow in Walk (v/h)	92	36	149	130
Veh. Perm. R. Flow in Walk (v/h)	0	0	0	0
Veh. RTOR Flow in Walk (v/h)	35	35	50	50
85th percentile speed (mph)	0.0	0.0	0.0	0.0
Right Corne Area per Ped (sq.ft)	-	-	-	-
Right Corner Quality of Service	0.0	0.0	0.0	0.0
Ped. Circulation Area (sq.ft)	0.0	-		
Crosswalk Circulation Code	-	-	-	-
Pedestrian Delay (s/p)	61.7	61.7	61.7	61.7
Pedestrian Compliance Code	Poor	Poor	Poor	Poor
Pedestrian Crosswalk Score	2.55	2.42	3.36	3.44
Pedestrian Crosswalk LOS	C	B	C	C

Approach	EB	WB	NB	SB
Bicycle Flow Rate (bike/h)	0	0	0	0
Total Flow Rate (veh/h)	416	382	1565	1202
Effct. Green for Bike (s)	27.1	20.4	73.2	68.9
Cross Street Width (ft)	122.7	122.5	45.0	45.1
Through Lanes Number	1	1	3	3
Through Lane Width (ft)	11.0	11.0	12.0	12.0
Bicycle Lane Width (ft)	0.0	0.0	5.0	5.0
Striped Parking Lane Width (ft)	0.0	0.0	0.0	0.0
Paved Shoulder Width (ft)	3.0	3.0	0.0	0.0
Curb Is Present?	No	No	No	No
On Street Parking?	No	No	No	No
Bicycle Lane Capacity (bike/h)	361	272	976	919
Bicycle Delay (s/bike)	50.3	56.0	19.7	21.9
Bicycle Compliance	Poor	Poor	Fair	Fair
Bicycle LOS Score	3.69	3.64	2.04	1.84
Bicycle LOS	D	D	B	B

Splits and Phases: 3: Nova Rd \& Madeline Ave

Network Totals

Number of Intersections	1
Total Delay (hr)	49
Stops (\#)	3241
Average Speed (mph)	12
Total Travel Time (hr)	65
Distance Traveled (mi)	757
Fuel Consumed (gal)	107
Fuel Economy (mpg)	7.1
Unserved Vehicles (\#)	0
Vehicles in dilemma zone (\#)	126
Performance Index	57.9

	EB	WB	NB	SB
Approach	45.1	45.0	122.7	122.5
Crosswalk Length (ft)	12.0	12.0	12.0	12.0
Crosswalk Width (ft)	4	4	7	7
Total Number of Lanes Crossed	0	0	0	0
Number of Right-Turn Islands	Actuated Actuated Actuated Actuated			
Type of Control	2	6	8	4
Corresponding Signal Phase	14.0	14.0	14.0	14.0
Effective Walk Time (s)	9.0	9.0	9.0	9.0
Right Corner Size A (ft)	9.0	9.0	9.0	9.0
Right Corner Size B (ft)	0.0	0.0	0.0	0.0
Right Corner Curb Radius (ft)	81.00	81.00	81.00	81.00
Right Corner Total Area (sq.ft)	0	0	0	0
Ped. Left-Right Flow Rate (p/h)	0	0	0	0
Ped. Right-Left Flow Rate (p/h)	0	0	0	0
Ped. R. Sidewalk Flow Rate (p/h)	210	95	79	105
Veh. Perm. L. Flow in Walk (v/h)	151	75	171	80
Veh. Perm. R. Flow in Walk (v/h)	0	0	0	0
Veh. RTOR Flow in Walk (v/h)	35	35	50	50
85th percentile speed (mph)	0.0	0.0	0.0	0.0
Right Corne Area per Ped (sq.ft)	0.0	-		
Right Corner Quality of Service	-	-	-	-
Ped. Circulation Area (sq.ft)	0.0	0.0	0.0	0.0
Crosswalk Circulation Code	-	-	-	-
Pedestrian Delay (s/p)	66.6	66.6	66.6	66.6
Pedestrian Compliance Code	Poor	Poor	Poor	Poor
Pedestrian Crosswalk Score	2.75	2.50	3.50	3.51
Pedestrian Crosswalk LOS	C	C	C	D

Approach	EB	WB	NB	SB
Bicycle Flow Rate (bike/h)	0	0	0	0
Total Flow Rate (veh/h)	506	340	1628	1659
Effct. Green for Bike (s)	25.6	23.2	80.9	70.5
Cross Street Width (ft)	122.7	122.5	45.0	45.1
Through Lanes Number	1	1	3	3
Through Lane Width (ft)	11.0	11.0	12.0	12.0
Bicycle Lane Width (ft)	0.0	0.0	5.0	5.0
Striped Parking Lane Width (ft)	0.0	0.0	0.0	0.0
Paved Shoulder Width (ft)	3.0	3.0	0.0	0.0
Curb Is Present?	No	No	No	No
On Street Parking?	No	No	No	No
Bicycle Lane Capacity (bike/h)	320	290	1011	881
Bicycle Delay (s/bike)	56.4	58.5	19.6	25.0
Bicycle Compliance	Poor	Poor	Fair	Fair
Bicycle LOS Score	3.84	3.57	2.07	2.09
Bicycle LOS	D	D	B	B

APPENDIX F:

Supporting Documentation for B/C Analysis

FDOT Long Range Estimating System - Production R3: Project Details by Sequence Report

Project: 101010-1-52-01
Letting Date: 01/2099
Description: VHB Project\# 663308.06 Madeline Avenue

X-Items

Pay item	Description	Quantity Unit	Unit Price Extended Amount	
$110-1-1$	CLEARING \& GRUBBING	0.31 AC	$\$ 26,786.74$	$\$ 8,303.89$
$120-1$	REGULAR EXCAVATION	251.00 CY	$\$ 32.84$	$\$ 8,242.84$
$120-6$	EMBANKMENT	125.00 CY	$\$ 35.42$	$\$ 4,427.50$

Earthwork Component Total
\$20,974.23

ROADWAY COMPONENT

User Input Data

Description

Number of Lanes
Existing Roadway Pavement Width L/R
Structural Spread Rate
Friction Course Spread Rate
Widened Outside Pavement Width L/R
Widened Structural Spread Rate
Widened Friction Course Spread Rate75165

X-Items				
Pay item	Description	Quantity Unit	Unit Price	Extended Amount
285-706	OPTIONAL BASE,BASE GROUP 06	633.00 SY	\$47.32	\$29,953.56
327-70-1	MILLING EXIST ASPH PAVT, 1" AVG DEPTH	146.00 SY	\$10.33	\$1,508.18
327-70-6	MILLING EXIST ASPH PAVT, 1 1/2" AVG DEPTH	1,918.00 SY	\$1.76	\$3,375.68
334-1-12	SUPERPAVE ASPHALTIC CONC, TRAFFIC B	8.00 TN	\$144.47	\$1,155.76
334-1-13	SUPERPAVE ASPHALTIC CONC, TRAFFIC C	52.00 TN	\$133.02	\$6,917.04
337-7-83	ASPH CONC FC,TRAFFIC C,FC12.5,PG 76-22	210.00 TN	\$127.45	\$26,764.50
710-11-101	PAINTED PAVT MARK,STD,WHITE,SOLID,6"	0.28 GM	\$1,098.71	\$307.64
710-11-123	PAINTED PAVT MARK,STD,WHITE,SOLID, 12"	154.00 LF	\$1.11	\$170.94
710-11-125	PAINTED PAVT MARK,STD,WHITE,SOLID,24"	149.00 LF	\$2.12	\$315.88
710-11-131	PAINTED PAVT MARK,STD,WHITE,SKIP, 6"	0.01 GM	\$511.79	\$5.12
710-11-201	PAINTED PAVT MARK,STD,YELLOW,SOLID,6"	0.33 GM	\$1,074.80	\$354.68
710-11-224	PAINTED PAVT MARK,STD,YELLOW,SOLID,18"	232.00 LF	\$1.57	\$364.24
711-11-170	THERMOPLASTIC, STD, WHITE, ARROW	5.00 EA	\$67.65	\$338.25

Pavement Marking Subcomponent

Description	Value
Include Thermo/Tape/Other	N
Pavement Type	Asphalt
Solid Stripe No. of Paint Applications	2
Solid Stripe No. of Stripes	2
Skip Stripe No. of Paint Applications	2
Skip Stripe No. of Stripes	1

Roadway Component Total

SHOULDER COMPONENT

User Input Data

Description	Value
Existing Total Outside Shoulder Width L/R	10.00 / 10.00
New Total Outside Shoulder Width L/R	$10.00 / 10.00$
Total Outside Shoulder Perf. Turf Width L/R	2.67 / 2.67
Existing Paved Outside Shoulder Width L/R	$5.00 / 5.00$
New Paved Outside Shoulder Width L/R	$5.00 / 5.00$
Structural Spread Rate	110
Friction Course Spread Rate	80
Total Width (T) / 8" Overlap (O)	T
Rumble Strips ï 112 No. of Sides	0

X-Items

Pay item Description Quantity Unit Unit Price Extended Amount
520-1-10 CONCRETE CURB \& GUTTER, TYPE F

$520-2-4$	CONCRETE CURB, TYPE D	38.00 LF	$\$ 33.25$	$\$ 1,263.50$
$520-3$	VALLEY GUTTER- CONCRETE	60.00 LF	$\$ 48.95$	$\$ 2,937.00$
$522-1$	CONCRETE SIDEWALK AND	121.00 SY	$\$ 56.71$	$\$ 6,861.91$
	DRIVEWAYS, 4"			
$522-2$	CONCRETE SIDEWALK AND	54.00 SY	$\$ 66.98$	$\$ 3,616.92$
$570-1-2$	DRIVEWAYS, 6"	PERFORMANCE TURF, SOD	472.00 SY	$\$ 3.97$

Erosion Control

Pay Items

Pay item	Description	Quantity Unit	Unit Price Extended Amount	
104-10-3	SEDIMENT BARRIER	528.00 LF	$\$ 1.49$	$\$ 786.72$
$104-18$	INLET PROTECTION SYSTEM	2.00 EA	$\$ 104.09$	$\$ 208.18$
$107-1$	LITTER REMOVAL	1.00 AC	$\$ 33.96$	$\$ 33.96$
$107-2$	MOWING	0.50 AC	$\$ 52.03$	$\$ 26.02$
				$\$ 23,243.52$

DRAINAGE COMPONENT

X-Items				
Pay item	Description	Quantity Unit	Unit Price Extended Amount	
425-1-361	INLETS, CURB, TYPE P-6, <10'	1.00 EA	$\$ 7,563.48$	$\$ 7,563.48$
$425-2-63$	MANHOLES, P-8, PARTIAL	1.00 EA	$\$ 5,466.05$	$\$ 5,466.05$
$430-174-118$	PIPE CULV, OPT MATL,	16.00 LF	$\$ 144.25$	$\$ 2,308.00$
	ROUND,18"SD			$\$ 15,337.53$

SIGNING COMPONENT

Pay Items

Pay item Description
700-1-11

SINGLE POST SIGN, F\&I GM, <12 SF

Quantity Unit Unit Price Extended Amount
3.00 AS $\$ 413.04 \quad \$ 1,239.12$

Signing Component Total
\$1,239.12

Sequence 1 Total

Sequence: 2 WUR - Widen/Resurface, Undivided, Rural
Net Length: $\begin{array}{r}0.096 \mathrm{MI} \\ 504 \mathrm{LF}\end{array}$
Description: Madeline (Westbound)

EARTHWORK COMPONENT

User Input Data

Description	Value
Standard Clearing and Grubbing Limits L/R	$30.00 / 30.00$
Incidental Clearing and Grubbing Area	0.00

Alignment Number 1
Distance 0.096
Top of Structural Course For Begin Section 102.00
Top of Structural Course For End Section 102.00
Horizontal Elevation For Begin Section 100.00

Existing Front Slope L/R
Existing Outside Shoulder Cross Slope L/R
Front Slope L/R
Outside Shoulder Cross Slope L/R
Roadway Cross Slope L/R

6 to $1 / 6$ to 1 $6.00 \% / 6.00 \%$

X-Items

Pay item	Description	Quantity Unit	Unit Price Extended Amount	
$110-1-1$	CLEARING \& GRUBBING	0.40 AC	$\$ 26,786.74$	$\$ 10,714.70$
$120-1$	REGULAR EXCAVATION	285.00 CY	$\$ 32.84$	$\$ 9,359.40$
$120-6$	EMBANKMENT	143.00 CY	$\$ 35.42$	$\$ 5,065.06$
				$\$ 25,139.16$

ROADWAY COMPONENT

User Input Data				
Description		Value		
Number of Lanes		2		
Existing Roadway Pavement Width L/R		10.00 / 10.00		
Structural Spread Rate		165		
Friction Course Spread Rate		80		
Widened Outside Pavement Width L/R		$2.00 / 2.00$		
Widened Structural Spread Rate		275		
Widened Friction Course Spread Rate		165		
X-Items				
Pay item	Description	Quantity Unit	Unit Price	ded Amount
285-706	OPTIONAL BASE,BASE GROUP 06	550.00 SY	\$47.32	\$26,026.00
327-70-6	MILLING EXIST ASPH PAVT,1 1/2" AVG DEPTH	1,609.00 SY	\$1.76	\$2,831.84
334-1-13	SUPERPAVE ASPHALTIC CONC, TRAFFIC C	45.00 TN	\$133.02	\$5,985.90
337-7-83	ASPH CONC FC,TRAFFIC C,FC12.5,PG 76-22	178.00 TN	\$127.45	\$22,686.10
710-11-101	PAINTED PAVT MARK,STD,WHITE,SOLID,6"	0.26 GM	\$1,098.71	\$285.66
710-11-123	PAINTED PAVT MARK,STD,WHITE,SOLID, 12"	103.00 LF	\$1.11	\$114.33
710-11-125	PAINTED PAVT MARK,STD,WHITE,SOLID,24"	125.00 LF	\$2.12	\$265.00
710-11-131	PAINTED PAVT MARK,STD,WHITE,SKIP, 6"	0.02 GM	\$511.79	\$10.24
710-11-170	PAINTED PAVT MARK,STD,WHITE, ARROWS	5.00 EA	\$36.68	\$183.40
710-11-201	PAINTED PAVT MARK,STD,YELLOW,SOLID,6"	0.24 GM	\$1,074.80	\$257.95
710-11-224	PAINTED PAVT MARK,STD,YELLOW,SOLID,18"	93.00 LF	\$1.57	\$146.01

Pavement Marking Subcomponent

Description	Value
Include Thermo/Tape/Other	N
Pavement Type	Asphalt
Solid Stripe No. of Paint Applications	2
Solid Stripe No. of Stripes	2
Skip Stripe No. of Paint Applications	2

SHOULDER COMPONENT

User Input Data

Description	Value
Existing Total Outside Shoulder Width L/R	$10.00 / 10.00$
New Total Outside Shoulder Width L/R	$10.00 / 10.00$
Total Outside Shoulder Perf. Turf Width L/R	$2.67 / 2.67$
Existing Paved Outside Shoulder Width L/R	$5.00 / 5.00$
New Paved Outside Shoulder Width L/R	$5.00 / 5.00$
Structural Spread Rate	110
Friction Course Spread Rate	80
Total Width (T) / 8" Overlap (O)	T
Rumble Strips ï¿½No. of Sides	0

X-Items

Pay item	Description	Quantity Unit	Unit Price Extended Amount	
$520-1-10$	CONCRETE CURB \& GUTTER,	841.00 LF	$\$ 31.66$	$\$ 26,626.06$
	TYPE F			
$522-1$	CONCRETE SIDEWALK AND	388.00 SY	$\$ 56.71$	$\$ 22,003.48$
$522-2$	DRIVEWAYS, 4"			
$570-1-2$	CONCRETE SIDEWALK AND	63.00 SY	$\$ 66.98$	$\$ 4,219.74$
	DRIVEWAYS, 6"	706.00 SY	$\$ 3.97$	$\$ 2,802.82$

Erosion Control

Pay Items

Pay item	Description	Quantity Unit	Unit Price Extended Amount	
$104-10-3$	SEDIMENT BARRIER	835.00 LF	$\$ 1.49$	$\$ 1,244.15$
$104-12$	STAKED TURBIDITY BARRIER-	24.00 LF	$\$ 5.29$	$\$ 126.96$
$104-18$	NYL REINF PVC	4.00 EA	$\$ 104.09$	$\$ 416.36$
$107-1$	INLET PROTECTION SYSTEM	0.44 AC	$\$ 33.96$	$\$ 14.94$
$107-2$	LITTER REMOVAL	0.22 AC	$\$ 52.03$	$\$ 11.45$
	MOWING			$\$ 57,465.96$

DRAINAGE COMPONENT
X-Items

Pay item	Description	Quantity Unit	Unit Price Extended Amount	
425-1-361	INLETS, CURB, TYPE P-6, <10'	3.00 EA	$\$ 7,563.48$	$\$ 22,690.44$
425-2-63	MANHOLES, P-8, PARTIAL	3.00 EA	$\$ 5,466.05$	$\$ 16,398.15$
$430-174-124$	PIPE CULV, OPT MATL,	320.00 LF	$\$ 132.37$	$\$ 42,358.40$
	ROUND,24"SD			
$430-984-129$	MITERED END SECT, OPTIONAL	1.00 EA	$\$ 2,299.56$	$\$ 2,299.56$
	RD, 24" SD			$\$ 83,746.55$

Pay item	Description	Quantity Unit	Unit Price Extended Amount	
$700-1-11$	SINGLE POST SIGN, F\&I GM, <12	3.00 AS	$\$ 413.04$	$\$ 1,239.12$
	SF			$\$ 1,239.12$

Date: 1/27/2022 1:22:09 PM

FDOT Long Range Estimating System - Production R3: Project Details by Sequence Report

Project: 101010-1-52-01
Letting Date: 01/2099
Description: VHB Project\# 663308.06 Madeline Avenue

District: 05	County: 79 VOLUSIA	Market Area: 06	Units: English
Contract Class:	Lump Sum Project: N	Design/Build: N	Project Length: 0.232 MI

Project Manager:

Version 45 Project Grand Total
\$455,739.90
Description: Madeline Avenue

Project Sequences Subtotal				\$358,709.09
102-1	Maintenance of Traffic	10.00 \%		\$35,870.91
101-1	Mobilization	10.00 \%		\$39,458.00
Project Sequences Total				\$434,038.00
Project Unknowns		0.00 \%		\$0.00
Design/Build		0.00 \%		\$0.00
Non-Bid Components:				
Pay item	Description	Quantity Unit	Unit Price	Extended Amount
999-25	InItiAl Contingency Amount (DO NOT BID)	LS	\$21,701.90	\$21,701.90
Project Non-Bid Subtotal				\$21,701.90
Version 45 Project Grand Total				\$455,739.90

PRELIMINARY COST ESTIMATE - SIGNAL
Madeline Avenue at Nova Road Intersection Improvements

Pay Item	Pay Item Description	Unit	Quantity	Unit Price	Total Cost
630-2-11	CONDUIT, FURNISH \& INSTALL, OPEN TRENCH	LF	250	\$13.45	\$3,362.50
630-2-12	CONDUIT, FURNISH \& INSTALL, DIRECTIONAL BORE	LF	500	\$26.75	\$13,375.00
632-7-1	SIGNAL CABLE- NEW OR RECONSTRUCTED INTERSECTION, FURNISH \& INSTALL	PI	1	\$7,010.00	\$7,010.00
633-8-1	MULTI-CONDUCTOR COMMUNICATION CABLE, FURNISH \& INSTALL	LF	150	\$5.70	\$855.00
635-2-11	PULL \& SPLICE BOX, F\&I, 13" $\times 24$ " COVER SIZE	EA	20	\$915.00	\$18,300.00
635-2-12	PULL \& SPLICE BOX, F\&I, 24" $\times 36$ " COVER SIZE	EA	2	\$1,810.00	\$3,620.00
646-1-11	ALUMINUM SIGNALS POLE, PEDESTAL	EA	8	\$1,800.00	\$14,400.00
649-21-21	STEEL MAST ARM ASSEMBLY, FURNISH AND INSTALL, SINGLE ARM 78'	EA	1	\$81,000.00	\$81,000.00
649-21-27	STEEL MAST ARM ASSEMBLY, FURNISH AND INSTALL, DOUBLE ARM 78'78'	EA	1	\$105,550.00	\$105,550.00
649-26-3	STEEL MAST ARM ASSEMBLY, REMOVE, SHALLOW FOUNDATION - BOLT ON ATTACHMENT	EA	2	\$4,255.00	\$8,510.00
650-1-14	VEHICULAR TRAFFIC SIGNAL (F\&I- ALUMINUM) (3 SECTION, 1 WAY)	AS	12	\$1,145.00	\$13,740.00
650-1-46	VEHICULAR TRAFFIC SIGNAL, FURNISH \& INSTALL PROGRAMMABLE, (4 SECTION, 1 WAY)	EA	2	\$5,775.00	\$11,550.00
653-1-11	PEDESTRIAN SIGNAL, FURNISH \& INSTALL LED COUNTDOWN, 1 WAY	AS	6	\$785.00	\$4,710.00
653-1-12	PEDESTRIAN SIGNAL, FURNISH \& INSTALL LED COUNTDOWN, 2 WAY	AS	3	\$1,380.00	\$4,140.00
665-1-11	PEDESTRIAN DETECTOR, FURNISH \& INSTALL, STANDARD	EA	12	\$290.00	\$3,480.00
660-4-11	VEHICLE DETECTION SYSTEM- VIDEO, FURNISH \& INSTALL CABINENT EQUIPMENT	EA	1	\$11,005.00	\$11,005.00
660-4-12	VEHICLE DETECTION SYSTEM- VIDEO, FURNISH \& INSTALL ABOVE GROUND EQUIPMENT	EA	4	\$5,110.00	\$20,440.00
663-1-111	SIGNAL PRIORITY AND PREEMPTION SYSTEM (F\&I) (OPTICAL) (CABINET ELECTRONICS)	EA	1	\$5,665.00	\$5,665.00
663-1-112	SIGNAL PRIORITY AND PREEMPTION SYSTEM (F\&\&I) (OPTICAL) (DETECTORS)	EA	4	\$1,770.00	\$7,080.00
682-1400	ITS CCTV CAMERA, RELOCATE (Existing Grid Smart Camera)	EA	1	\$2,000.00	\$2,000.00
700-5-22	INTERNALLY ILLUMINATED SIGN (F\&I- OVERHEAD MOUNT) (12 SF TO 18 SF)	EA	4	\$4,050.00	\$16,200.00
715-1-12	LIGHTING CONDUCTORS, F\&I, INSULATED, NO.8-6	LF	4,176	\$2.50	\$10,440.00
715-4-13	LIGHT POLE COMPLETE, FURNISH \& INSTALL STANDARD POLE STANDARD FOUNDATION, 40' MOUNTING HEIGHT	EA	8	\$7,765.00	\$62,120.00
715-4-70	LIGHT POLE COMPLETE, REMOVE POLE AND FOUNDATION	EA	8	\$840.00	\$6,720.00
715-500-1	POLE CABLE DISTRIBUTION SYSTEM, FURNISH AND INSTALL, CONVENTIONAL	EA	8	\$815.00	\$6,520.00

[^1]SUBTOTAL
$\$ 441,792.50$
MOBILIZATION (10\%)
$\$ 44,179.25$

MAINTENANCE OF TRAFFIC (10\%)	$\$ 48,597.18$
PROJECT UNKNOWNS (10\%)	$\$ 44,179.25$

[^2]TRANSPORTATION

Inflation Factors

This "Transportation Costs" report is issued by the Office of Policy Planning. It provides information on inflation factors and other indices that may be used to convert Present Day Costs (PDC) to future Year Of Expenditure costs (YOE) or vice versa. This report is updated regularly based on the FDOT Work Program Instructions.

Please note that the methodology for inflationary adjustments relating to specific transportation projects should be addressed with the district office where the project will be located. For general use or non-specific areas, the guidelines provided herein may be used for inflationary adjustments.

Construction Cost Inflation Factors

The table on the next page includes the inflation factors and Present Day Cost (PDC) multipliers that are applied to the Department's Work Program for highway construction costs expressed in Fiscal Year 2022 dollars (FY 2022 runs from July 1, 2021 to June 30, 2022).

Other Transportation Cost Inflation Factors

Other indices may be used to adjust project costs for other transportation modes or nonconstruction components of costs. Examples are as follows:

The Consumer Price Index (CPI, also retail price index) is a weighted average of prices of a specified set of products and services purchased by wage earners in urban areas. As such, it provides one measure of inflation. The CPI is a fixed quantity price index and a reasonable cost-of-living index.

The Employment Cost Index (ECI) is based on the National Compensation Survey, administered by the Bureau of Labor Statistics (BLS). It measures quarterly changes in compensation costs, which include wages, salaries, and other employer costs for civilian workers (nonfarm private industry and state and local government).

The monthly series, Producer Price Index for Highway and Street Construction, is also available from BLS. It provides national-level estimates of past and recent highway construction inflation. The Producer Price Index (PPI) web site is http://www.bls.gov/ppi/home.htm.

Work Program
Highway Construction Cost Inflation Factors

Fiscal Year	Inflation Factor	PDC Multiplier
2022	Base	1.000
2023	2.7\%	1.027
2024	2.8\%	1.056
2025	2.9\%	1.086
2026	3.0\%	1.119
2027	3.1\%	1.154
2028	3.2\%	1.191
2029	3.3\%	1.230
2030	3.3\%	1.270
2031	3.3\%	1.312
2032	3.3\%	1.356
2033	3.3\%	1.400
2034	3.3\%	1.447
2035	3.3\%	1.494
2036	3.3\%	1.544
2037	3.3\%	1.595
2038	3.3\%	1.647
2039	3.3\%	1.702
2040	3.3\%	1.758
2041	3.3\%	1.816
2042	3.3\%	1.876
2043	3.3\%	1.938
2044	3.3\%	2.002
2045	3.3\%	2.068
2046	3.3\%	2.136
2047	3.3\%	2.206
2048	3.3\%	2.279
2049	3.3\%	2.354
2050	3.3\%	2.432
2051	3.3\%	2.512
2052	3.3\%	2.595
2053	3.3\%	2.681
2054	3.3\%	2.769
2055	3.3\%	2.861
2056	3.3\%	2.955
2057	3.3\%	3.053
2058	3.3\%	3.153
2059	3.3\%	3.257

Operational Benefits Summary			
Benefit Period		Measures of Effectiveness	
		Total Delay (vehhrs)	Fuel Consumption (gal)
AM Peak Hour	2025 No Build	37.0	77.0
	2025 Build	31.0	76.0
PM Peak Hour	2025 No Build	54.0	108.0
	2025 Build	49.0	107.0
Estimated Daily (AM+ PM)	2025 No Build	91	185
	2025 Build	80	183
Estimated Daily Savings [4*(AM + PM)]		44	8
Estimated Unit Cost		\$20.170	\$4.110
Daily User Benefit by MOE		\$887.480	\$32.880
Daily User Benefit Total		920.36	
Annual User Benefit		\$276,108.00	
The service life of the improvement was kept as twenty (20) years. Interest rate of 4% was used in arriving at the annual cost of improvements.			

Project Cost (2022)					
		Roadway	Signal	Total	
Sub-Total					
		$\$ 358,709.09$	$\$ 441,792.50$	$\$ 1,070,358.98$	
MOT	10%	$\$ 35,870.91$	$\$ 44,179.25$		
Mobilization	10%	$\$ 39,458.00$	$\$ 48,597.18$		
Unknowns	10%	$\$ 35,870.91$	$\$ 44,179.25$		
Initial Contingency Amount	-	$\$ 21,701.90$	-		
Total		$\$ 491,610.81$	$\$ 578,748.18$		

Adjusted Project Costs							
Fiscal Year	Intlation Eactor	Multiplier	Roadway Cost	Signal Cost	Total		
2022	Base	1.000	$\$ 491,610.81$	$\$ 578,748.18$	$\mathbf{\$ 1 , 0 7 0 , 3 5 8 . 9 8}$		
2023	2.70%	1.027	$\$ 504,884.30$	$\$ 594,374.38$	$\mathbf{\$ 1 , 0 9 9 , 2 5 8 . 6 8}$		
2024	2.80%	1.056	$\$ 519,141.01$	$\$ 611,158.07$	$\mathbf{\$ 1 , 1 3 0 , 2 9 9 . 0 9}$		
2025	2.90%	1.086	$\$ 533,889.34$	$\$ 628,520.52$	$\mathbf{\$ 1 , 1 6 2 , 4 0 9 . 8 6}$		

Interest rate of 4\% was used in arriving at the annual cost of improvements.

Florida's Transportation Engineers
Rev. 02/2014

Benefit-Cost Analysis

District: Five County: 79-Volusia Date Prepared: 04/11/22

Location: Madeline Ave \& Nova Rd

Section :
Beg. Milepost :
Type: $\quad \mathbf{2 - 3}$ Lanes Urban UnDivided
\square End Milepost :
Rdway Type: 2-3 Lanes Urban UnDivided

Control Element: Other (describe in box below)

Turn Lane/Signal Improvements

ANNUAL COST OF IMPROVEMENTS
Capital
Service Recovery

Type	Cost		Life	Factor	Total	
ROW			100	0.0408	\$	-
P.E.C.E.I.			15	0.0899	\$	-
Structure			75	0.0425	\$	-
Roadway	\$	533,889.34	20	0.0736	\$	39,294.26
Drainage			20	0.0736	\$	-
Signal	\$	628,520.52	20	0.0736	\$	46,259.11
Other			20	0.0736	\$	-
Sub-Total	\$	1,162,409.86			\$	85,553.37
				ual Cost $=$	\$	85,553.37

Total number of crashes $=$	64	Primary crash reduction factor (\%):
\# of correctable crashes, $\mathrm{PC}=$	18	Change permissive to protected-only phasing for EBL and WBL
\# of years of crash data, YD $=$	5	
PC/YD $=$	3.60	Additional crash reduction factor:
Crash reduction factor, CRF $=$	99.00%	
CRF x $(\mathrm{PC} / \mathrm{YD})=$	3.56	
Cost per crash, CPC $=$	$\$ 124,618.00$	Additional crash reduction factor:
Safety Benefit $=$	$\$ 444,139$	
Operational Benefit $=$	$\$ 276,108$	

BENEFIT/COST RATIO

$$
\frac{\text { Benefit }}{\text { Cost }}=\frac{\$ 720,246.55}{\$ 85,553.37}=\mathbf{8 . 4 2}
$$

[^3]Prepared by: VHB

[^0]: Note: * V/C Ratio - Volume over count ratio; The maximum value is reported for each movement and the overall intersection

[^1]: Notes:

 1. Unit prices based on current FDOT 6 Month Moving Statewide Averages
 2. Estimate assumes new mast arms due to EB right turn lane improvement \& structural analysis not meeting current design standards with additional loadings
 3. Estimate includes enhanced pedestrian lighting at the intersection
[^2]: TOTAL SIGNAL ESTIMATED PROJECT COSTS $\$ 578,748.18$

[^3]: 1) A Crash Reduction Factor of 99% was used based CMF ID 333 from the cmfclearinghouse.org (Accident Modification Factors for Traffic Engineering and ITS Improvements, Harkey Et Al., 2008); 2) Left and Angle crashes were assumed to be correctable because of the capacity/signal improvements; 3) Operations benefits of $\$ 276,108.00$ was added to the safety benefits to get the overall B/C Rati0; 4) Construction cost is represented in 2025 dollar value based on a inflation factor of ? 00/
